Understanding the inner workings of biological machines
Many biological macromolecules assemble into complexes to perform their physiological functions. These molecular machines range in complexity from relatively simple molecules to large macromolecular assemblies, and they are designed to perform specific tasks within the cell. This thematic session will cover exciting new advances in our understanding of the structure, function and engineering of molecular machines. The session will encompass the wide range of molecular assemblies that accomplish diverse and often essential tasks within a cell, including molecular motors responsible for protein processing and vesicle trafficking as well as supramolecular complexes mediating energy transduction, transport and protein synthesis.
Presentations in this track will cover a wide range of experimental and technical approaches, such as advances in structural biology (cryo-electron microscopy, X-ray crystallography and nuclear magnetic resonance spectroscopy), single molecule biophysics and super-resolution imaging. It also will cover novel conceptual advances, including new insights into the design of natural and synthetic molecular machines and how energy is transduced to power biological nanomachines at the molecular level.
Keywords: molecular motors, protein complexes, transporters, force generation and transduction, supramolecular assemblies.
Who should attend: those fascinated by structure–function relationships in biological systems, how macromolecules undergo modular assembly and what kinds of energetic input power the work of molecular machines.
Theme song: “Ghosts in My Machine” by Annie Lennox.
This track is powered by ATP and ion gradients.
Talks
- Single molecule biophysics — Carlos Bustamante, University of California, Berkeley
- Myosin: Structure, function, regulation and disease — Michelle Peckham, University of Leeds
- Watching a fine-tuned molecular machine at work: Structural and functional studies of the 26S proteasome — Andreas Martin, University of California, Berkeley
- Integrated 3D tomography and computational modeling to study forces in metaphase spindles — Stefanie Redemann, University of Virginia School of Medicine
- Functional assembly of the mitochondrial protein transport machinery — Nathan Alder, University of Connecticut
- Nascent protein selection and triage at the ribosome exit site — Shu-ou Shan, California Institute of Technology
- Structure of the alternative complex III from Flavobacterium johnsoniae in a supercomplex with cytochrome c oxidase — Robert Gennis, University of Illinois
- Special capabilities of the ribosomal machinery — Roland Beckman, Ludwig-Maximilians-Universit盲t M眉nchen
- Sugary coats: Synthesis and secretion of extracellular polysaccharides — Jochen Zimmer, University of Virginia
- Molecular assemblies of membrane remodeling and scission — James Hurley, University of California, Berkeley
- Hi-fi molecular transmission via crisscross cooperativity — William Shih, Harvard University
- Activation of the exocyst tethering complex for SNARE complex regulation and membrane fusion — Mary Munson, University of Massachusetts Medical School
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreFeatured jobs
from the
Get the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Careers
Careers highlights or most popular articles
Careers in industry: A year in review
Careers columnist Inayah Entzminger looks back at 12 months of interviews, advice and lists of resources.
Upcoming opportunities
Unleash your potential at the 2025 Deuel Conference on Lipids! Registration closes on Dec. 23.
Where to look for jobs
Careers columnist Elizabeth Stivison writes a lot about different jobs. But where, she wondered, can you actually find these jobs? So she made a list.
Upcoming opportunities
Register for the 2025 91亚色传媒 Annual Meeting in Chicago by Feb. 18 to save on costs!
Facing the challenges of an M.D./Ph.D.
Grad school and med school are very different in their structures and priorities. So what鈥檚 the best strategy for doing both at the same time?
Upcoming opportunities
Save the date for 91亚色传媒's meeting on transforming undergraduate education! Reminder: Submit your #91亚色传媒25 abstract by Dec. 9.