Spatial transcriptomics sharpens distinctions between brains
Single-cell RNA sequencing is becoming a workhorse of transcriptomics, giving researchers details on transcription in individual cells and a sense of both tissue-level heterogeneity and how many cell types are present. As powerful as single-cell techniques are, they pose a challenge in that tissues must be dissociated to be analyzed. This can cost contextual information in tissues where a cell’s position is important.
In the brain, for example, many functions depend on interactions between adjacent cells. Based on single-cell sequencing, researchers have identified multiple types of both inhibitory and excitatory neurons in the brain and dozens of subtypes of glia, or nonneuronal cells. But to learn more about how position affects function and how this diversity of cell types arises, researchers need more information about which cells are where — a question for spatial transcriptomics.
There are several ways to assay the transcriptome without losing spatial information. Researchers can microdissect tiny, defined portions of tissues for RNA sequencing assays; they can capture nucleic acids in a known, spatially defined pattern before single-cell sequencing; or they can hybridize fluorescent probes to RNA and image it in thin tissue sections, sometimes after expanding the tissue. Scientists have struggled to strike a balance between spatial resolution and the number of transcripts they can assay at once.
In , a Harvard team used a multiplexed in situ hybridization technique called MERFISH, which assays tissue slices for a selection of thousands of genes, to identify dozens of cell types in multiple regions of the mouse and human cortexes. The researchers spotted numerous interesting distinctions between the two species; for example, the human cortex is composed of a higher proportion of glia and inhibitory neurons than the mouse cortex. Human brains were also much more apt to show soma, or cell body, interactions between distinct cell types, particularly neurons and glial cells, suggesting more complex contact-mediated relationships between these cells.
In in Science, researchers based at Yale and the University of Wisconsin–Madison, compared human, macaque, chimpanzee and marmoset brain regions responsible for cognition, identifying subtle differences in important genes, such as a dopamine-producing enzyme, in certain cell types by region.
These techniques have yet to capture single cells in space. However, researchers are developing ways to get closer. in the journal Nature Biotechnology this year by a research team from across Europe merges expression signatures from single-cell RNA sequencing experiments with spatial transcriptomic location from a sparse subset of these transcripts. By combining the data, the method can determine which classes of cells exist in each location and which type most likely occupies a given location. at Harvard are working on ways to determine likely boundaries between cells based on their transcriptomes.
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Opinions
Opinions highlights or most popular articles
Our top 10 articles of 2024
91亚色传媒 Today posted more than 400 original articles this year. The ones that were most read covered research, society news, policy, mental health, careers and more.
From curiosity to conversation: My first science café
鈥淲hy was I so nervous? I鈥檇 spoken in hundreds of seminars and classes, in front of large audiences.鈥 But this was the first time Ed Eisenstein was explaining his research 鈥渢o a crowd of nonscientists relaxing over food and drink at a local tavern.鈥
鈥極ne word or less鈥
For a long time, Howard Steinman thought this phrase was a joke: 鈥淟ess than one word is no words, and you can't answer a question without words.鈥
Can we make grad school more welcoming for all?
The students and faculty at most of the institutions training the next generation of STEM professionals do not reflect the country鈥檚 diversifying demographics, leaving a gap in experience and cultural understanding.
I am not a fake. I am authentically me
Camellia Moses Okpodu explains why she believes the term 鈥渋mposter syndrome鈥 is inaccurate and should be replaced.
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.