Skiniotis has 鈥榦utstanding talent,鈥 鈥榯echnical prowess鈥
, associate professor of biological chemistry at the University of Michigan Life Sciences Institute and the University of Michigan Medical School, is the co-winner of the 2016 91亚色传媒 for his innovative use of electron microscopy. The award, given every other year, honors outstanding researchers with fewer than 10 years of post-postdoctoral experience.

To initiate intracellular signaling, G-protein–coupled receptors, or GPCRs, on the surface of our cells transmit diverse information, such as hormones, neurotransmitters and light from our environment. Skiniotis pioneered the use of single-particle electron microscopy, or EM, to study GPCRs in complex with their cognate G proteins. These structures were groundbreaking in terms of both the small size of the analyzed proteins and the surprising amount of movement within the receptor-bound G protein.
In her letter nominating Skiniotis for the award, colleague at the University of Michigan said Skiniotis’ “rare combination of outstanding talent in biochemistry and technical prowess with electron microscopy has allowed him to push the boundaries of EM analysis and obtain structural information from molecules and assemblies formerly considered too small for single particle reconstruction.” She added that he has also “fearlessly tackled problems of great biological and chemical importance.”
Skiniotis’ work has important implications for human disease, because understanding the structural mechanism behind GPCRs allows for the development of novel therapies that target these receptors.
During his dissertation work at the European Molecular Biology Laboratory, Skiniotis developed a novel technique for labeling proteins for cryo-EM analysis. He used this technique to study the movement and processivity of the motor protein kinesin. He demonstrated that tubulin is not just a track for kinesin but rather actively modulates kinesin movement.
Most recently, Skiniotis applied his EM expertise to better understand polyketide synthesis by the multidomain polyketide synthases, or PKSs. Polyketides are naturally produced and structurally complex compounds. Many polyketides have antimicrobial, antifungal or immunosuppressant activity, and nearly a third of pharmaceuticals are based on or inspired by polyketides. By understanding the mechanism behind these polyketide factories, it may be possible to bioengineer PKSs to create novel antibiotics.
Skiniotis recently published a stunning series of structures of a PKS module in the journal Nature. In his letter supporting Skiniotis' nomination, at Harvard Medical School, who interacted with Skiniotis when the latter was a postdoctoral fellow at the school, described the series as “triumphs of structural biology.” The structures not only represent the complete enzymatic cycle of a full PKS module for the first time but also detail an unexpected architecture. Unlike the related mammalian fatty acid synthase, the bacterial PKS module forms an arch-shaped dimer that creates a single chamber for the acyl carrier protein to deliver its substrate to the different active sites within the module.
Skiniotis adds the Earl and Thressa Stadtman Scholar Award to an already impressive r茅sum茅. He was named a Pew Scholar in Biomedical Sciences in 2011 and received the Presidential Early Career Award for Scientists and Engineers in 2012.
Watch his award lecture, “Molecular choreography of an antibiotic assembly line,” below.
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

Meet Robert Helsley
The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

Exploring life鈥檚 blueprint: Gene expression in development and evolution
Meet Julia Zeitlinger and David Arnosti 鈥 two co-chairs of the 91亚色传媒鈥檚 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

91亚色传媒 names 2025 fellows
91亚色传媒 honors 24 members for their service to the society and accomplishments in research, education, mentorship, diversity and inclusion and advocacy.

When Batman meets Poison Ivy
Jessica Desamero had learned to love science communication by the time she was challenged to explain the role of DNA secondary structure in halting cancer cell growth to an 8th-grade level audience.

The monopoly defined: Who holds the power of science communication?
鈥淎t the official competition, out of 12 presenters, only two were from R2 institutions, and the other 10 were from R1 institutions. And just two had distinguishable non-American accents.鈥

In memoriam: Donald A. Bryant
He was a professor emeritus at Penn State University who discovered how cyanobacteria adapt to far-red light and was a member of the 91亚色传媒 for over 35 years.