91ÑÇÉ«´«Ã½

Profile

Stark raving mad for science

George Stark’s enthusiasm for understanding signaling pathways and developing biochemical methods is infectious
Rajendrani Mukhopadhyay
June 1, 2012

of the Cleveland Clinic is as comfortable in a kitchen as he is in a laboratory. The son of a restaurant owner, Stark says, “learning how to handle myself in a restaurant was good training for how to be a good chemist.” In fact, an extremely good biochemist. Stark’s scientific accomplishments, such as the development of Northern blotting for detecting RNA and the discovery of the JAK-STAT signaling pathway, have garnered him many accolades, including the 2011 , awarded by the 91ÑÇÉ«´«Ã½ each year for excellence in biological chemistry and molecular biology (1).

Photo of George Stark 
George Stark remains committed to developing methods and understanding the fundamentals of signaling pathways. Photo courtesy of George Stark 

As a boy in the 1940s, Stark spent hours working in his father’s eatery, Stark’s Beef and Beans, in Washington, D.C. Watching his father’s struggles made Stark decide at a young age that the restaurant business was not for him. His father agreed. His father, whom Stark describes as “a dominant personality … a go-out-and-get-’em business man,” had grand plans for his only son (Stark has two older sisters). “It was the typical ‘My son should be a doctor!’” says Stark with a laugh.

Stark’s mother was a quiet woman who worked as a bookkeeper to hold the family steady through the highs and lows of the restaurant business. His parents didn’t know much about science, Stark says, but, based on what they were aware of, they encouraged him to pursue medicine. To get the boy started, the family moved to New York City so Stark could attend the Bronx High School of Science for his senior year.

He went on to Columbia College for his undergraduate degree, but as he got more into his premedical school studies, Stark says, he realized he really wanted to do research, not medicine. A comparative anatomy class cemented the decision. “Looking at a bunch of pins stuck in a dissected frog and trying to remember the names of what was underneath each pin was daunting for me,” he says. “I can remember things very well if I can link them in a logical chain, but the names of all these nerves and so forth in the frog were not linkable in a logical chain for me!”

In what he calls an act of self-defense to avoid medical school, Stark stayed on at Columbia for graduate school in the laboratory of his undergraduate adviser, Charles Dawson, to study ascorbate oxidase from yellow crook-necked squash. for The Journal of Biological Chemistry, Stark recalls spending happy hours in the cold room peeling mounds of the vegetable because the enzyme was concentrated in its skin (2).

Stark followed his graduate studies with a stint at The Rockefeller University as a postdoctoral fellow with soon-to-be Nobel laureates Stanford Moore and William Stein, who had invented the amino acid analyzer and sequenced bovine pancreatic ribonuclease. It was also during this time that Stark met a physicist who became his wife and, for several years, labmate. Stark has described Mary Beck as “the glue that holds one’s life together.”

Stanford

Stark’s work on carbamylation to identify the amino-terminal residues of proteins and aspartate transcarbamylase attracted the attention of Arthur Kornberg, who recruited him to Stanford University in the early 1960s. There, in the 1970s, Stark’s group developed Northern blotting. At that time, RNA was detected by separating an RNA mixture in a tube gel, freezing the gel, and “putting it in a device like an egg slicer and cutting it into 100 or so pieces,” says Stark. Each gel piece was hybridized with a complementary RNA probe to see which gel piece contained the RNA in question. The method, Stark says, was “ridiculously cumbersome.” His group decided to do better.

They had figured out in 1975 how to make chemically reactive cellulose that would covalently bind to DNA and RNA (3). Stark’s group then made chemically reactive cellulose paper onto which they could attach RNA molecules from a gel. They then probed the entire paper with the complementary nucleic acid chain (4). “It actually worked the first time we tried it,” says Stark.

Stark’s sense of humor came through when they named the technique “Northern blotting” as a joke on Southern blotting, which Edwin Southern at Oxford University had developed for DNA detection (5). Similarly, Stark’s group did the first demonstration of the idea of transferring proteins out of gels for detection (6, 7).

It was also at Stanford that Stark’s group discovered PALA, an abbreviation for N-phosphonacetyl-L-aspartate (8). The molecule is the analog of aspartate transcarbamylase’s transition state. Stark’s group discovered that PALA was a strong inhibitor of aspartate transcarbamylase and that it could enter mammalian cells to block pyrimidine nucleotide biosynthesis.

With PALA, Stark and colleagues went on to discover the giant polypeptide CAD that contained aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, all involved in pyrimidine synthesis. By studying CAD, Stark’s group was one of the first to show gene amplification in mammalian cells.

An American in London

In 1983, after 20 years at Stanford, Stark landed in London at the Imperial Cancer Research Fund. His research interests had moved from protein biochemistry to cellular and molecular biology, and he was interested in interferon-dependent signaling, an area in which he worked in collaboration with Ian Kerr at the U.K. Medical Research Council.

“London is a wonderful place to live,” says Stark. “We were very privileged, because we owned a house in California that we were basically able to trade for a nice house in central London.” Stark says that the environment at ICRF was also special. “My lab was completely funded. I didn’t have to write any grants. All I had to do was show up for a review every five years,” he explains. “It was heaven for somebody like me who wanted to primarily do research.”

Part of his group in London worked on mechanisms of gene amplification, and the rest worked on interferon signaling pathways, research that later led to the discovery of the JAK-STAT pathway (9). The group also developed an approach called validation-based insertional mutagenesis (10).

But Stark’s idyllic world was in for a nasty surprise nine years later. “I realized I was going to have to retire in the British system in a couple of more years!” he says. Stark would have had to have stopped working in 1995 at age 62.

Back in the U.S.

Determined not to be forced out, Stark found another position in 1992 at the Cleveland Clinic Foundation, where a vacancy popped up after Bernadine Healy moved to become head of the National Institutes of Health under President George H.W. Bush. Twenty years later, his laboratory still continues to forge ahead on interferons, STAT1 and NFκB research.

His group has found that the mutagenesis approach they have developed can be powerful. “It is a way to upregulate gene expression randomly in a population of cells,” explains Stark. “If upregulation of a protein in one cell out of millions in a population gives you an interesting phenotype and you have a way to find that cell by selection or something else, then that can lead to a novel research project.”

Photo of George Stark and his family 
Stark with his wife, Mary Beck; son, Robert; and daughter, Janna. Photo courtesy of George Stark. 

For instance, Stark’s group has an interest in lysine methylation of transcription factors, a mechanism that affects gene expression. With the mutagenesis approach, “we found upregulation of a demethylase that affected the function of NFκB,” says Stark (11). “We’ve also used that method a lot in finding new mechanisms of drug resistance” (12).

Immersed as he is, Stark still manages to have a life outside of science. “I like to cook. I enjoy sports, mostly now as a viewer rather than a participant!” he says. “I love classical music. I did sing together with Mary a lot. We were in choruses in New York and California.” The Starks also are enthusiastic concert and theater goers and collect art pieces, such as Japanese prints and Inuit sculptures.

But Stark continues to be leery of retirement. He has reduced his load of administrative work so he can have more free time to spend with his family. But he is absolutely certain of one thing: “I don’t want to give up science,” he says. “I don’t want to quit.”

References

  1. Zagorski, N. George Stark to give 2011 annual meeting opening lecture. 91ÑÇÉ«´«Ã½ Today, .
  2. Stark, G.R. J. Biol. Chem.280, (2005).
  3. Noyes, B.E. & Stark, G.R. Cell 5, (1975).
  4. Renart, J.; Reiser, J.; & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 76, (1979).
  5. Southern, E.M. J. Mol. Biol.98, (1975).
  6. Alwine, J.C.; Kemp, D.J.; & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 74, (1977).
  7. Mukhopadhyay, R. The men behind Western blotting. 91ÑÇÉ«´«Ã½ Today, .
  8. Kresge, N.; Simoni, R.D.; & Hill, R.L. J. Biol. Chem. 282, (2007).
  9. Kandel, E.S. et al. Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
  10. Velazquez, L. et al. Cell70, (1992).
  11. Tao, L. et al. Proc. Natl. Acad. Sci. U.S.A. 106, (2009).
  12. Canhui Guo & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 108, (2011).

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Rajendrani Mukhopadhyay

Rajendrani Mukhopadhyay is the former managing editor of 91ÑÇÉ«´«Ã½ Today.

Featured jobs

from the

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Hidden strengths of an autistic scientist
Essay

Hidden strengths of an autistic scientist

April 3, 2025

Navigating the world of scientific research as an autistic scientist comes with unique challenges —microaggressions, communication hurdles and the constant pressure to conform to social norms, postbaccalaureate student Taylor Stolberg writes.

Richard Silverman to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Richard Silverman to speak at 91ÑÇÉ«´«Ã½ 2025

March 27, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

Women’s History Month: Educating and inspiring generations
Observance

Women’s History Month: Educating and inspiring generations

March 27, 2025

Through early classroom experiences, undergraduate education and advanced research training, women leaders are shaping a more inclusive and supportive scientific community.

91ÑÇÉ«´«Ã½ honors Lawrence Tabak with public service award
Award

91ÑÇÉ«´«Ã½ honors Lawrence Tabak with public service award

March 26, 2025

He will deliver prerecorded remarks at the 2025 91ÑÇÉ«´«Ã½ Annual Meeting in Chicago.

91ÑÇÉ«´«Ã½ names 2025 JBC/Tabor Award winners
Award

91ÑÇÉ«´«Ã½ names 2025 JBC/Tabor Award winners

March 24, 2025

The six awardees are first authors of outstanding papers published in 2024 in the Journal of Biological Chemistry.

Daniel N. Hebert (1962–2024)
Retrospective

Daniel N. Hebert (1962–2024)

March 17, 2025

Daniel Hebert’s colleagues remember the passionate glycobiologistscientist, caring mentor and kind friend.