91ÑÇÉ«´«Ã½

Award

A pandemic focus on a notorious protein

Jay Thakkar
Aug. 1, 2024

During the COVID-19 pandemic, Gabriela Dias Noske and other researchers at the University of Sao Paulo — like scientists all over the world — shifted their research projects toward the SARS-CoV-2 virus. Dias Noske was working with proteases at the time, so she pivoted to the main protease of the virus and worked to assess its structural features for drug design.

Gabriela Dias Noske
Gabriela Dias Noske

The research was not without its challenges, especially during the pandemic, with lab resources scarce and inaccessible at times.

“It was very demanding because we were working with no weekends and no holidays, just working with only four people in the lab to keep the lab working,” Dias Noske said. “But it was a very nice thing to be able to be there and doing something for a pandemic.”

The main protease, or Mpro, of the SARS-CoV-2 virus is an important protein in disease progression. Dias Noske and colleagues sought to determine the structural basis of antivirals such as nirmatrelvir and ensitrelvir and how these drugs inhibit Mpro and its mutations.

Dias Noske conducted activity-based screening assays and structural data analysis using crystallographic data. She found many key interactions between the antivirals and the Mpro mutations, which will aid in developing the next generation of antivirals that inhibit Mpro and its mutations.

For published in the Journal of Biological Chemistry, Dias Noske received a 2024 .

A physics major during her undergraduate studies, Dias Noske decided to specialize in biomolecular physics in grad school. She began by using crystallography to solve the crystal structure of viral proteins. Having worked on several viruses during her doctoral studies, she is now working on cryo-electron tomography, imaging virus–host interactions within cells using a microscope.

Mutations and drug activity

Antivirals are used to inhibit viral replication and stop the progression of viral diseases like COVID-19. Researchers need to understand the structure and mutations of Mpro as it is a crucial part of viral replication and can cause antiviral resistance.

Gabriela Dias Noske and a team at the University of Sao Paulo studied 14 naturally occurring polymorphs of Mpro against the antivirals nirmatrelvir and ensitrelvir to understand the key interactions in protein inhibition. They showed that there were changes in potency — the amount of drug required for a desired effect. The drug–target interactions were confined to a specific binding site, where the drug binds to a number of amino acid residues in the protein sequence. Changes in the structure within the binding site affect drug interactions, and the drug loses its ability to cause a desired response.

Activity-based screening assays compared potency for the 14 mutants and wild-type Mpro for the two drugs. Nirmatrelvir showed slightly lower potency for most of the polymorphs, and ensitrelvir showed significantly lower potency with respect to the wild type. The data also suggest a distinctive binding profile for the two drugs.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Jay Thakkar

Jay Thakkar is a researcher, who specializes in computer-aided drug design and discovery. He earned a bachelor's degree in chemical engineering from the Dwarkadas J. Sanghvi College of Engineering in Mumbai, India, and a master's degree in chemistry from the Stevens Institute of Technology in Hoboken, New Jersey, where he studied drug discovery. His hobbies include reading, driving on open roads and walking in the park.
 

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Sung honored for research; Sliger, Young named astronaut scholars
Member News

Sung honored for research; Sliger, Young named astronaut scholars

Dec. 23, 2024

Patrick Sung receives the 2024 Basser Global Prize from the Basser Center for BRCA at Penn Medicine. A foundation created by Mercury 7 astronauts awards scholarships to Shelby Sliger and Tara Young.

‘Our work is about science transforming people’s lives’
Interview

‘Our work is about science transforming people’s lives’

Dec. 17, 2024

Ann West, chair of the 91ÑÇÉ«´«Ã½ Public Affairs Advisory Committee, sits down Monica Bertagnolli, director of the National Institutes of Health.

Pernas named fellow; Heitman and Wu elected to NAM
Member News

Pernas named fellow; Heitman and Wu elected to NAM

Dec. 16, 2024

Lena Pernas is named a fellow by the David and Lucile Packard Foundation. Joseph Heitman and Hao Wu are inducted into the National Academy of Medicine.

Awards for Maquat and Gohil; Sobrado named biochem chair
Member News

Awards for Maquat and Gohil; Sobrado named biochem chair

Dec. 9, 2024

Vishal Gohil is honored for work with copper. Lynn Maquat receives two awards for RNA research. Pablo Sobrado is named endowed chair of biochemistry.

What seems dead may not be dead
Award

What seems dead may not be dead

Dec. 4, 2024

Vincent Tagliabracci will receive the Earl and Thressa Stadtman Distinguished Scientist Award at the 91ÑÇÉ«´«Ã½ Annual Meeting, April 12–15 in Chicago.

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Molecular Parasitology at the 2025 91ÑÇÉ«´«Ã½ Annual Meeting, April 12–15 in Chicago.