How spider venom could help relieve pain
Pain is a public health problem that often is not adequately addressed by current therapies. , and those who don’t will experience pain at some point in their lives, whether it be a scraped knee or surgery.
naturale Giacomo Doria in 2016.
There is a need for pain treatments that are safe, effective and not addictive. This is partially due to increased awareness of the highly addictive nature of many available pain medications. in the Journal of Biological Chemistry aims to meet these treatment needs using an unlikely source — spider venom.
Spider venoms are complex mixtures with a wide array of biologically active compounds that have one function: to subdue the spiders’ prey. Lead author Robert Neff and the Drug Discovery Team focused on a peptide molecule called huwentoxin-IV found in the venom of a tarantula species called the Chinese bird spider.
This toxin is known to block a specific protein involved in pain signaling called Nav1.7. This protein is a sodium channel that amplifies pain signals to ensure they reach the brain. Neff said the researchers targeted Nav1.7 because previous research has shown that people who don’t have functioning Nav1.7 can’t feel pain despite being otherwise normal.
“Unfortunately, Nav1.7 is not an easy target,” Neff said. “Many other groups have tried to identify small molecules that block its activity, and to date none of these efforts have resulted in a marketed drug.”
As an added challenge, huwentoxin-IV is known to block other proteins in the sodium channel family that are important for normal nervous system function. Yet Neff and his team were not discouraged. They worked systematically to make small changes to huwentoxin-IV that would optimize its interaction with Nav1.7 and decrease its ability to block other sodium channel family members.
When they identified changes that had favorable effects, they combined them to make a molecule more effective at blocking pain signaling without disrupting the rest of the nervous system. However, combining single changes together did not always yield a molecule more effective than the single changes themselves, which was surprising, Neff said.
“This was a good reminder that small changes can have wide-ranging and unpredictable repercussions throughout the molecule.”
Although the work is still in preliminary stages, there is reason to believe we could see spider-derived pain treatments down the line. A tarantula toxin previously identified by the group in has been tested in preclinical studies. While their current designer molecules are not yet in preclinical trials, Neff and his team have produced a large library of subtly different toxins and cataloged their activities in their more recent study, which should be useful for the pain research community at large.
“We hope that other interested investigators will be able to use these datasets to further their research,” Neff said. “We want to help accelerate the discovery of a new, safe, and nonaddictive pain medication.”Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.
Of yeasts and men: One-hour proteomes, 10 years apart
To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.