91ÑÇÉ«´«Ã½

Journal News

Removing belly fat
before it sticks to you

University of Cincinnati researchers produce fat-busting proteins in the lab
Cedric Ricks
By Cedric Ricks
March 24, 2020

Triglycerides, those fats that seem to be the bane of any diet, remain a mystery for many researchers. Plenty of them are in Big Macs, deep pan pizza and the like, but some are a necessity to fuel the body for daily activities.

Researchers Mark Castleberry, a doctoral student, and professor Sean Davidson, both in the University of Cincinnati College of Medicine, have found a way to produce in the laboratory a human protein produced in the liver known as apolipoprotein A5, or APOA 5. It plays an important role in metabolizing and clearing excess levels of triglycerides from the bloodstream.

were published in the Journal of Lipid Research. Castleberry, who is studying in the UC department of molecular genetics, biochemistry and microbiology, is the paper’s first author.

 

Colleen Kelley/UC Creative Services
Mark Castleberry, a doctoral student, and Sean Davidson are pictured in Davidson's lab at the University of Cincinnati College of Medicine

“We are really interested in understanding triglycerides because hypertriglyceridemia — too much fat in your blood — is a big factor leading to cardiovascular disease, diabetes, obesity and other health concerns,” explains Davidson, who holds appointments in UC’s departments of pathology and laboratory medicine and molecular genetics, biochemistry and microbiology. “When you have a lot of fat that is hanging around in your circulation it’s important to clear as much of it out as soon as possible.”

“APOA5 is highly involved in how fast triglycerides get taken out of your circulation,” says Davidson, who has a doctorate in biochemistry. “The more APOA5 you have the faster the triglyceride is removed. Everybody agrees it is an important protein but scientists don’t know much about its structure or how it does what it does. If we could figure out how it works we could come up with a drug that uses the same mechanism or trigger it to work better.”

The work demonstrates UC's commitment to research as described in its strategic direction called .

Castleberry says researchers inserted a human gene coded by DNA into bacteria genetically engineered to produce human proteins. Once those proteins were produced they were removed from the host and purified for use in studies at the lab bench and in mouse models.

“We can quickly make a much greater amount of this protein using bacterial production than if we tried to isolate it from blood in humans,” explains Castleberry. “The mice in this study were basically fed a large bowl of fat and triglycerides.”

“We could analyze their blood after we fed them and observe the level of fat change as they digested the meal,” said Castleberry. “We were able to give our protein to the mice that had that fatty meal and rapidly clear the triglycerides that would have accumulated in their blood.”

Other co-authors of this study were Xenia Davis; Thomas Thompson, a professor in UC’s department of molecular genetics, biochemistry and microbiology, and Patrick Tso and Min Liu, both professors in UC’s department of pathology and laboratory medicine. 

The research was supported by the National Institutes of Health’s Heart, Lung and Blood Institute, which funded a predoctoral fellowship for Castleberry.

This article was originally published on the UC News page. Read it .
 
Sean Davidson, an associate editor of the Journal of Lipid Research, recently talked to staff writer Laurel Oldach about his fascination with high-density lipoprotein and why he cringes when people call it “good cholesterol.”  Also, his love of competitive cycling. Read the 91ÑÇÉ«´«Ã½ Today interview.

 

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Cedric Ricks
Cedric Ricks

Cedric Ricks is a public information officer at the University of Cincinnati.

Related articles

Chicago’s scientific interface
Gabriella Rant & Madeline Ganshert
Meet Robert Helsley
Christopher Radka
Upcoming opportunities
91ÑÇÉ«´«Ã½ Today Staff
From the Journals: MCP
Indumathi Sridharan

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the 91ÑÇÉ«´«Ã½â€™s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 27, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.

New mass spectrometry assay speeds up UTI diagnosis
Journal News

New mass spectrometry assay speeds up UTI diagnosis

Feb. 25, 2025

Scientists in Quebec use liquid chromatography–mass spectrometry to reduce the time needed to test for bacteria in urine from days to minutes — and with smaller samples.

From the journals: MCP
Journal News

From the journals: MCP

Feb. 21, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.