Study suggests that estrogen may drive nicotine addiction in women
A newly discovered feedback loop involving estrogen may explain why women might become dependent on nicotine more quickly and with less nicotine exposure than men. The research could lead to new treatments for women who are having trouble quitting nicotine-containing products such as cigarettes.
Sally Pauss is a doctoral student at the University of Kentucky College of Medicine in Lexington. She led the project.
“Studies show that women have a higher propensity to develop addiction to nicotine than men and are less successful at quitting,” said Pauss, who is working under the supervision of Terry D. Hinds Jr., an associate professor. “Our work aims to understand what makes women more susceptible to nicotine use disorder to reduce the gender disparity in treating nicotine addiction.”
The researchers found that the sex hormone estrogen induces the expression of olfactomedins, proteins that are suppressed by nicotine in key areas of the brain involved in reward and addiction. The findings suggest that estrogen–nicotine–olfactomedin interactions could be targeted with therapies to help control nicotine consumption.
Pauss will present the research at , the annual meeting of the 91ÑÇÉ«´«Ã½, which will be held March 23–26 in San Antonio.
“Our research has the potential to better the lives and health of women struggling with substance use,” she said. “If we can confirm that estrogen drives nicotine seeking and consumption through olfactomedins, we can design drugs that might block that effect by targeting the altered pathways. These drugs would hopefully make it easier for women to quit nicotine.”
For the new study, the researchers used large sequencing datasets of estrogen-induced genes to identify genes that are expressed in the brain and exhibit a hormone function. They found just one class of genes that met these criteria: those coding for olfactomedins. They then performed a series of studies with human uterine cells and rats to better understand the interactions between olfactomedins, estrogen and nicotine. The results suggested that estrogen activation of olfactomedins — which is suppressed when nicotine is present — might serve as a feedback loop for driving nicotine addiction processes by activating areas of the brain’s reward circuitry such as the nucleus accumbens.
The researchers are now working to replicate their findings and definitively determine the role of estrogen. This knowledge could be useful for those taking estrogen in the form of oral contraceptives or hormone replacement therapy, which might increase the risk of developing a nicotine use disorder.
The investigators also want to determine the exact olfactomedin-regulated signaling pathways that drive nicotine consumption and plan to conduct behavioral animal studies to find out how manipulation of the feedback loop affects nicotine consumption.
Sally Pauss will present this research during a poster session from 4:30–6:30 p.m. CDT on Monday, March 25, in the exhibit hall of the Henry B. González Convention Center (Poster Board No. 152) ().
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.