91ÑÇÉ«´«Ã½

Wellness

What you eat can reprogram your genes

Monica Dus
By Monica Dus
March 27, 2022

People typically think of food as calories, energy and sustenance. However, the latest evidence suggests that food also “talks” to our genome, which is the genetic blueprint that directs the way the body functions down to the cellular level.

This communication between food and genes may affect your . The idea that food delivers important messages to an animal’s genome is the focus of a field known as . This is a discipline still in its infancy, and many questions remain cloaked in mystery. Yet already, we researchers have learned a great deal about how .

Along with calories and nutrients, food can influence the genetic blueprints that shape who you are.
The field of nutrigenomics aims to decipher how different types of foods transmit different — and important — messages to our cells.

I am a who , and in the effort to better understand how food messages affect our biology. The efforts of scientists to decipher this transmission of information could one day result in healthier and happier lives for all of us. But until then, nutrigenomics has unmasked at least one important fact: Our relationship with food is far more intimate than we ever imagined.

The interaction of food and genes

If the idea that food can drive biological processes by interacting with the genome sounds astonishing, one need look no further than a beehive to find a proven and perfect example of how this happens. Worker bees labor nonstop, are sterile and live only a few weeks. The queen bee, sitting deep inside the hive, has a life span that lasts for years and a fecundity so potent she gives birth to an entire colony.

And yet, worker and queen bees are genetically identical organisms. They become two different life forms because of the . The queen bee feasts on ; worker bees feed on nectar and pollen. Both foods provide energy, but royal jelly has an extra feature: to create the anatomy and physiology of a queen bee.

So how is food translated into biological instructions? Remember that . These include carbohydrates — or sugars — proteins and fat. Food also contains micronutrients such as vitamins and minerals. These compounds and their breakdown products can trigger .

Like the switches that control the intensity of the light in your house, genetic switches determine how much of a certain gene product is produced. Royal jelly, for instance, contains compounds that to form the queen’s organs and sustain her reproductive ability. In humans and mice, byproducts of the amino acid methionine, which are abundant in meat and fish, are known to influence genetic dials that are . And vitamin C plays a role in keeping us healthy by ; it also promotes the function of cellular pathways that can repair the genome if it does get damaged.

Depending on the type of nutritional information, the genetic controls activated and the cell that receives them, the messages in food can influence . But it’s important to note that to date, most of these studies have been conducted in animal models, like bees.

Interestingly, the ability of nutrients to alter the flow of genetic information can span across generations. Studies show that in humans and animals, influences the activity of genetic switches and the disease risk and mortality of grandchildren.

Cause and effect

One interesting aspect of thinking of food as a type of biological information is that it gives new meaning to the idea of a food chain. Indeed, if our bodies are influenced by what we have eaten — down to a molecular level — then what the food we consume “ate” also could affect our genome. For example, compared to milk from grass-fed cows, the milk from grain-fed cattle has different amounts and types of . So when humans drink these different types of milk, their cells also receive different nutritional messages.

Similarly, a human mother’s diet changes the levels of fatty acids as well as vitamins such as B-6, B-12 and folate that are found in her breast milk. This could alter the type of nutritional messages reaching the baby’s own genetic switches, although whether or not this has an effect on the child’s development is, at the moment, unknown.

And, maybe unbeknownst to us, we too are part of this food chain. The food we eat doesn’t tinker with just the genetic switches in our cells, but also with those of . One striking example: In mice, the breakdown of short-chain fatty acids by gut bacteria , a brain chemical messenger that regulates mood, anxiety and depression, among other processes.

Food additives and packaging

Added ingredients in food can also alter the flow of genetic information inside cells. Breads and cereals to prevent birth defects caused by deficiencies of this nutrient. But some scientists hypothesize that high levels of folate such as vitamin B-12 could contribute to the higher incidence of colon cancer in Western countries, possibly by affecting the .

This could also be true with chemicals found in food packaging. Bisphenol A, or BPA, a compound found in plastic, in mammals that are critical to development, . For example, some researchers suspect that, , BPA influences the age of sexual differentiation and decreases fertility by making genetic switches more likely to turn on.

All of these examples point to the possibility that the genetic information in food could arise not just from its molecular composition — the amino acids, vitamins and the like — but also from the agricultural, environmental and economic policies of a country, or the lack of them.

Scientists have only recently begun decoding these genetic food messages and their role in health and disease. We researchers still don’t know precisely how nutrients act on genetic switches, what their rules of communication are and how the diets of past generations influence their progeny. Many of these studies have so far been done only in animal models, and much remains to be worked out about what the interactions between food and genes mean for humans.

What is clear though, is that unraveling the mysteries of nutrigenomics is likely to empower both present and future societies and generations.The Conversation

This article is republished from under a Creative Commons license. Read the .

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Monica Dus
Monica Dus

Monica Dus is an assistant professor of molecular, cellular and developmental biology at the University of Michigan.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
91ÑÇÉ«´«Ã½ Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

 A new kind of stem cell is revolutionizing regenerative medicine
Feature

A new kind of stem cell is revolutionizing regenerative medicine

April 1, 2025

Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
91ÑÇÉ«´«Ã½ Annual Meeting

Engineering the future with synthetic biology

March 31, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Webinar

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance

March 28, 2025

Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
91ÑÇÉ«´«Ã½ Annual Meeting

Host vs. pathogen and the molecular arms race

March 28, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.