91ÑÇÉ«´«Ã½

News

Ebola virus hides out in brain

Monkeys treated with monoclonal antibodies fully recovered, but infection recurred
Kevin Zeng
By Kevin Zeng
April 16, 2022

The Ebola virus can hide in the brains of monkeys that have recovered after medical treatment without causing symptoms and lead to recurrent infections, according to a study by a that was published in the journal .

infectious disease threats known to humankind, with an . Ebola is known for a high level of , meaning the virus remains lurking in the body even after a patient has recovered. But where this hiding place is remains largely unknown.

This image shows Ebola virus particles (red) budding from the surface of kidney cell (blue).
National Institute of Allergy and Infectious Diseases/Flickr, CC BY-SA
This image shows Ebola virus particles (red) budding from the surface of kidney cell (blue).

In 2021, there were , all linked to previously infected survivors. Ebola also reemerged in that same year, linked to a survivor of the 2013-2016 Ebola outbreak.

Email Twitter19 Facebook902 LinkedIn Print  The Research Brief is a short take about interesting academic work. The big idea  The Ebola virus can hide in the brains of monkeys that have recovered after medical treatment without causing symptoms and lead to recurrent infections, according to a study by a team I led that was published in the journal Science Translational Medicine.  Ebola is one of the deadliest infectious disease threats known to humankind, with an average fatality rate of about 50%25. Ebola is known for a high level of viral persistence, meaning the virus remains lurking in the body even after a patient has recovered. But where this hiding place is remains largely unknown.  In 2021, there were three Ebola outbreaks in Africa, all linked to previously infected survivors. Ebola also reemerged in Guinea that same year, linked to a survivor of the 2013-2016 Ebola outbreak. Don’t let yourself be misled. Understand issues with help from experts A laboratory technician in full Personal protective equipment pipettes samples under a lab hood. The researchers conducted their study in a Biosafety Level 4 lab, the highest level of biocontainment required to safely study hazardous pathogens like Ebola.
John W. Braun, USAMRIID, CC BY-NC-ND
The researchers conducted their study in a Biosafety Level 4 lab, the highest level of biocontainment required to safely study hazardous pathogens like Ebola.

We wanted to better understand where the Ebola virus “hides” in the body of survivors and what triggers recurrent infections. So we examined 36 rhesus monkeys that had been treated for Ebola with , a type of treatment that helps the immune system mount an attack against an infection. These monkeys were deemed fully recovered with no symptoms of infection or detectable virus in their blood.

When we looked more closely at the tissues of different organs under a microscope, however, we found that about 20% of recovered monkeys still had visible Ebola virus located exclusively in the of the brain. This brain region produces, circulates and stores , which protects, supplies nutrients to and removes waste products from the brain.

Importantly, despite being asymptomatic at the start of our study, two of the monkeys we observed developed Ebola symptoms before dying at 30 and 39 days after their initial infection, respectively. Our findings suggest that the Ebola virus can hide dormant in the brains of survivors even after treatment, and the virus can reactivate and cause fatal infections later on.

This image shows the brain ventricular system of a rhesus monkey that survived Ebola virus infection, where brown indicates viral persistence.
Kevin Zeng, CC BY-NC-ND
This image shows the brain ventricular system of a rhesus monkey that survived Ebola virus infection, where brown indicates viral persistence.

Why it matters

Treatment with monoclonal antibodies is the current . But recurrent infections can occur even after apparently successful treatment, and patients can inadvertently transmit the virus and cause new outbreaks.

Our study underscores the importance of careful long-term medical follow-up of successfully treated Ebola survivors to counter the individual and public health cost of recurrent disease. This follow-up, however, will need to be conducted in a way that does not further .

What still isn’t known

We still don’t know why the Ebola virus persists in the brain and causes recurrent infections. It is also unclear whether this persistence might be related to monoclonal antibody treatments, and whether other types of therapies, such as antivirals, might produce a different effect. Researchers are still looking into what triggers relapses and whether there might be other parts of the body that may act as reservoirs.

What’s next

Our work highlights the need to more deeply investigate why the Ebola virus persists in the brain. Because the brain is to monoclonal antibodies, treatments may help prevent and clear persistent Ebola infection and related disease in the brain. Analyzing viral persistence at the may provide more insight.

This article is republished from under a Creative Commons license. Read the .

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Kevin Zeng
Kevin Zeng

Kevin Zeng is a principal investigator at the U.S. Army Medical Research Institute of Infectious Diseases.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From the journals: JBC
Journal News

From the journals: JBC

Dec. 27, 2024

Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.