91ÑÇÉ«´«Ã½

News

Scientists unmask a virus that mimicked human RNA and hit on a potential vaccine

Human metapneumovirus is a molecular mimic, sneaking past immune systems to cause cold symptoms
Ankita Arora
April 18, 2021

Viruses are clever parasites that are quick to hack into host systems for their survival. But viruses can themselves be turned on their head. Can you imagine a virus hacking the immune system to hide from the body and then hacking the hacker itself to make a vaccine? 

RNA-445x297.jpg
NIAID on Wikimedia Commons

published in February in Nature Microbiology, has shown that this is possible. Scientists determined that a virus called human metapneumovirus (hMPV) mimics human RNA to hide from the body's immune response. But blocking the ability of the virus to do so results in a mutant strain that can actually act as a candidate vaccine.

The was . It is considered one of the leading causes of respiratory infections around the world, particularly in infants, elderly, and immunocompromised people. Although there have been many advancements in hMPV research since its discovery, there is still no Food and Drug Administration-approved antiviral or vaccine available to treat it.

The mutant virus was less infectious, took longer to duplicate and synthesized less viral proteins in laboratory conditions than the original form

hMPV uses (a cousin of DNA) as a blueprint to make copies of itself. have been known for many years but only recently their roles have started to come to the surface.

Think of RNA modifications as do-it-yourself charms on a bracelet. You can add different decorations/charms to the chain (the RNA strand) that makes each bracelet unique. Similarly, human proteins modify their RNA to mark them with a unique identity that helps distinguish their own RNA from RNA belonging to foreign invaders like viruses.

A very common and important RNA modification is called m6A (). , but its biological function has largely been a puzzle for virologists. Imagine m6a as just one particular kind of charm on RNA's chain. As of now, there is no consensus on whether m6A positively or negatively affects viral load, or what it does for viruses.

In this new paper, led by Mijia Lu and Zijie Zhang from the Ohio State University Department of Veterinary Biosciences, researchers showed that the hMPV genome, (template strand for RNA genome replication), and are festooned with m6A. 

Single-stranded-RNA-382x1053.jpg
Single-stranded RNA

Next, the team moved onto understanding the function of these modifications. First, they identified which of hMPV's genes had the most m6A modifications. Then, they developed a mutated form of the virus that lacked these modifications so they could study how the virus performed without them.

To their surprise, they found that the mutant virus was less infectious, took longer to duplicate and synthesized less viral proteins in laboratory conditions than the original form, or the wild type, of hMPV. Encouraged by this discovery, the researchers then introduced the mutant virus into human lung cells (grown in a dish) and the eureka moment arrived. The mutant virus increased production of a protein called (INF-1), an antiviral molecule made by the immune system, which is responsible for activating the first line of defense against pathogens.

This raised an important question: why would a virus with less m6A than normal activate a stronger immune response than the wild type virus?

Imagine a security system installed in your house. The security camera differentiates between family members and threats. Once a burglar is identified, the system alerts the owner of the potential threat. Similarly, humans have a built-in that distinguishes between self (human) and non-self (viral, in this case) molecules. And once it detects non-self molecules, it activates the alarm to release INF-1, which calls for help from other immune cells, including and antibodies.

The mutant virus can effectively provide complete protection against the viral infection

The scientists deduced that the extra m6As on the RNA of the wild type virus effectively disguised it as human RNA (self-RNA). The virus is quite clever. It gains m6As on its RNA that make it look human, tricking the body's security camera and decreasing the likelihood that the virus is destroyed it before its too late.

Without the modifications in viral RNA, the immune system is no longer confused and can effectively mount a defense strategy. The researchers confirmed this by conducting an experiment in rats infected with the mutant virus. They observed that the rats immunized with the mutant virus and then infected with wild type hMPV produced more IFN-1 and a higher antibody and T-cell immune response compared to rats that were not immunized. This means that the mutant virus can effectively provide complete protection against the viral infection.

This pivotal experiment proved to be the last piece of the puzzle confirming that genome editing to mutate modification sites in the virus can serve as an effective strategy to design novel vaccines against hMPV. hMPV has an infection rate of , making it incidence similar to that of influenza virus. And the estimated annual burden associated with hMPV infection is – proving it a substantial health care concern. 

This research is an excellent reminder that though viruses are a global health threat, they still serve as great teachers of cell biology. And these teachers will continue to provide scientists with valuable tools to gain deeper insights into the world of RNA modifications.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Ankita Arora

Ankita Arora is an RNA-biologist-turned-freelance-science-writer. Her 12 years of experience in research and her storytelling skills help her distill science jargon into bite-size chunks that are fun to read. She aims to make science enjoyable and accessible for all. She is an 91ÑÇÉ«´«Ã½ Today volunteer contributor.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the 91ÑÇÉ«´«Ã½â€™s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 27, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.

New mass spectrometry assay speeds up UTI diagnosis
Journal News

New mass spectrometry assay speeds up UTI diagnosis

Feb. 25, 2025

Scientists in Quebec use liquid chromatography–mass spectrometry to reduce the time needed to test for bacteria in urine from days to minutes — and with smaller samples.

From the journals: MCP
Journal News

From the journals: MCP

Feb. 21, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.