Identifying a new lipid metabolism gene
People with familial hypercholesterolemia, or FH, have very high levels of low-density lipoprotein cholesterol circulating in their blood due to aberrant LDL uptake by cells. With LDL levels elevated for prolonged periods, these patients are at increased risk for atherosclerotic cardiovascular disease.
“Mutations in several genes have been identified as contributors of FH,” Diego Lucero, a research fellow at the National Institutes of Health, explained. “However, a genetic link is still unidentified in about 20% to 40% of FH patients. This makes diagnosis and drug therapy design more challenging.”
Working in lab, which focuses on understanding lipid metabolism and developing therapies to treat cardiovascular diseases, Lucero became interested in identifying other genes that contribute to aberrant LDL metabolism.
Through genomewide CRISPR–Cas9 knockout screening, Lucero used 76,441 sgRNAs to knock out 19,114 genes in Cas9-expressing HepG2 liver cells. sgRNA-transduced cells then were incubated with fluorescently labeled LDL and sorted for LDL uptake through flow cytometry. He collected cells with 5% or lower LDL uptake and deep sequenced them to determine sgRNA representation.
“If a gene influenced LDL uptake, its sgRNAs would feature among the most enriched in the deep sequencing,” Lucero said.
By studying sgRNA enrichment in his cell populations, Lucero identified 15 genes that influenced LDL uptake. He then generated HepG2 cell lines with these 15 candidate genes removed, and he remeasured LDL uptake in these cells.
“As expected, knockout of the LDLR gene showed the most robust reduction (about 80%) in cellular LDL uptake,” said Lucero. “We also observed consistent reductions in LDL uptake in three other novel genes.”
One of the three was transgelin.
Lucero worked with collaborators at the Mayo Clinic to validate the gene hits through the Global Lipids Genetics Consortium and lipid-related phenotypes available in UK Biobank. They found that differences in transgelin expression in human populations were associated strongly with elevated plasma lipids (triglycerides, total cholesterol and LDL cholesterol), making transgelin a target for further investigation. However, transgelin is an actin-binding protein that promotes motility in cells. What role does it play in lipid metabolism?
“In transgelin knockout cells, we found a universal 30% reduction in uptake of LDL, very low-density lipoprotein and transferrin,” Lucero said. “This led us to believe that transgelin affects something common between these cargos.”
When LDL binds to the LDL receptor, the latter is internalized, facilitating transport of LDL into the cell through clathrin-mediated endocytosis. And actin filament reorganization is a necessary step during clathrin-mediated endocytosis.
“Our microscopy experiments showed that transgelin plays a vital role during LDLR internalization, most likely by binding to actin filaments during endocytosis,” Lucero said. “This facilitates LDL uptake and consequently affects cellular cholesterol homeostasis.”
These findings recently were published in the . Lucero plans to continue this project using mice that are genetically modified to lack transgelin.
“We are also studying other proteins besides transgelin that might be involved in the uptake of LDL,” he said. “While this study focused on genes that reduce LDL uptake, we have also identified those that increase LDL uptake. This is an exciting direction because these might be therapeutic targets that could reduce cholesterol in blood.”
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.