Hinton lab maps structure of mitochondria at different life stages
Mitochondria, organelles with an inner and outer membrane, are responsible for creating the energy that cells use to survive, and their morphology is key to accomplishing this task. The inner mitochondrial membrane contains folds, called cristae, that maximize the surface area available for mitochondrial energetic processes.
Although oxidative stress is a normal part of the reactions that take place inside mitochondria, excess stress and dysfunction are associated with disease and aging. Yet, as the number and function of mitochondria are highly dependent on what tissue they’re in, scientists are interested in exploring the changes that occur in mitochondria across tissues as we age.

The lab of Antentor O. Hinton Jr., assistant professor of molecular physiology and biophysics, came together with collaborators from across Vanderbilt University, Vanderbilt University Medical Center, the U.S., and Brazil to determine the differences in the 3D morphology of mitochondria and their cristae in brown adipose tissue.
BAT uses the cristae within mitochondria for thermogenesis—the dissipation of heat that helps humans classify as warm-blooded animals. Scientists have observed a decrease in BAT thermogenic function in both older rodents and humans, and the decline has been associated with the development of metabolic disorders, including obesity and diabetes.
Changes in mitochondrial morphology in the context of BAT is not well understood, so researchers, led by Hinton lab Ph.D. student Amber Crabtree, developed a quantitative 3D electron microscopy approach to map cristae network organization in the BAT of adult and aged mice.
, published in Advanced Biology and featured on the , build upon prior work that suggests that the surface area, volume, and complexity of mitochondria grow as mice age. However, Crabtree and Hinton also showed that the surface area, volume, and complexity of the cristae decrease during aging.
“These findings highlight the importance of considering changes in overall cristae density and not relying solely on changes in mitochondrial mass to quantify mitochondrial morphology changes,” the authors said in the paper.
The researchers also reported that the overall shape of mitochondria influences the thermogenic capacity of BAT, as high-thermogenic BAT mitochondria were round or spherical, while low-thermogenic mitochondria were more elongated. Reduced thermogenic capacity was also associated with aging and obesity, which suggests that mitochondrial structure and function may have implications for overall metabolic health.

Hinton hopes that future studies will determine whether there are sex-dependent differences in BAT mitochondrial structure across aging. Specifically, probing mitochondrial structure and function within BAT and across other tissues and other species may broaden our understanding of aging mechanisms and identify potential therapies to treat ailments associated with aging and mitochondrial dysfunction.
Collaborators on this paper include labs from Vanderbilt University, Vanderbilt University Medical Center, Meharry Medical College, Fisk University, Tennessee State University, the University of Pittsburgh, the National Heart, Lung and Blood Institute, the University of Washington, the Federal University of State of Rio de Janeiro, and the Catholic University of Petrópolis.
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Unraveling oncogenesis: What makes cancer tick?
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

A new kind of stem cell is revolutionizing regenerative medicine
Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.