91ÑÇÉ«´«Ã½

News

Environmental DNA and COVID-19

How a tool used to detect endangered wildlife ended up helping fight the pandemic
Jessica Alice Farrell David Duffy Liam Whitmore
By Jessica Alice Farrell, David Duffy and Liam Whitmore
April 25, 2021

Imagine discovering an animal species you thought had gone extinct was still living – without laying eyes on it. Such was the case with the Brazilian frog species Megaelosia bocainensis, whose complete disappearance in 1968 led scientists to believe it had become extinct. But through a novel genetic detection technique, .

Looking-for-DNA-445x296.jpg
David Duffy, CC BY-ND
Looking for bits of DNA at the University of Florida.

Such discoveries are now possible thanks to a new approach that recovers and reads the trace amounts of DNA released into the environment by animals. It's called environmental DNA, or eDNA – and it takes advantage of the fact that via skin, hair, scales, feces or bodily fluids as it moves through the world.

at the University of Florida's , we responsible for a , which . We also use eDNA to detect sea turtles in the wild.

But in 2020, human health researchers began repurposing eDNA techniques to track the COVID-19 pandemic. This is a prime example of how research in one area – wildlife conservation – can be adapted to another area – human disease mitigation. Going forward, we believe eDNA will prove to be an essential tool for monitoring both human and animal health.

From soil microbes to sea turtles

Scientists in the 1980s began . Over the next 20 years, the technique was adapted for use with air and water samples, and scientists started using eDNA to .

Tracing-DNA-890x623.jpg
Liam Whitmore, University of Limerick
Scientists now can detect DNA traces from many different environments.

While the science behind eDNA techniques is complex, the actual process of collecting and testing a sample is relatively simple. Samples are filtered through very fine paper, which traps loose cells and strands of DNA. The techniques to read what DNA is present are the same as those used for tissue or blood samples, usually or . Scientists can either read all of the DNA present from every organism – or target just the DNA from species of interest.

Scientists now routinely use eDNA to . The ability to tell whether an animal is present without ever needing to lay eyes or a lens on it is an incredible leap forward, decreasing the time, resources and human effort needed to monitor and protect vulnerable species.

Turtle-890x668.jpg
Devon Rollinson-Ramia,
Routine imaging of a juvenile green sea turtle patient afflicted with virus-triggered fibropapillomatosis at the Florida Whitney Sea Turtle Hospital.

However, to truly protect endangered species, it's not just the animals that need to be monitored, but the pathogens that threaten their survival. Environmental DNA is able to monitor the parasites, fungi and .

Tracking COVID-19

While scientists originally over a decade ago, it wasn't until the beginning of the current COVID-19 human pandemic that the repurposing of eDNA took off on a large scale, allowing the technology to make staggering advancements in very short order.

Coronavirus genomes consist not of DNA, but rather its cousin molecule, RNA. So researchers have rapidly optimized a variation of eDNA – eRNA – to detect coronavirus RNA in air and human wastewater.

For example, at the University of Florida Health Shands Hospital, researchers collected air samples from the hospital room of two COVID-19 patients. Using eRNA, they . Confirming air as a key route of transmission directly influenced public health guidelines.

Sample-collecting-890x736.jpg

When scientists apply eRNA to , the . , peaked on March 9, 2020, but the number of clinical cases didn't peak until the start of April 2020 because of the lag time between infection and severe clinical symptoms.

This sort of predictive monitoring has profound implications for health care systems, allowing time to prepare – not just for COVID-19, but for any future disease outbreaks that threaten human populations.

Intersection of diseases

It's vital that human and animal diseases are studied together. – with many of these (42%) originating in wildlife populations, including Ebola, Zika, West Nile and Marburg viruses. Alternatively, .

SARS-CoV-2 has already infected , and - the latter of which .

Medics, veterinarians and scientists call this convergence of human, animal and environmental well-being or EcoHealth. Studying and treating human and wildlife disease together and often yields breakthroughs.

With eDNA, all pathogens can be monitored in an environment regardless of where they come from. An integrated eDNA monitoring program could cost-effectively provide advanced warning of human, livestock and wildlife diseases.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jessica Alice Farrell
Jessica Alice Farrell

Jessica Alice Farrell is currently completing a marine biology PhD, focusing on the firbopapillomatosis pandemic in Chelonia mydas, at the Whitney Laboratory & Sea Turtle Hospital at the University of Florida.

David Duffy
David Duffy

David Duffy is an Assistant Professor of Wildlife Disease Genomics, University of Florida. The Duffy Lab focuses on questions at the interface between wildlife and human health, with the aim of identifying disease mechanisms and novel therapeutic treatments.

Liam Whitmore
Liam Whitmore

Liam Whitmore is a zoologist who graduated from Bangor University (Wales) with a Master's in Zoology with Conservation. He is currently studying for his PhD at the University of Limerick, Ireland.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
91ÑÇÉ«´«Ã½ Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

 A new kind of stem cell is revolutionizing regenerative medicine
Feature

A new kind of stem cell is revolutionizing regenerative medicine

April 1, 2025

Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
91ÑÇÉ«´«Ã½ Annual Meeting

Engineering the future with synthetic biology

March 31, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Webinar

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance

March 28, 2025

Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
91ÑÇÉ«´«Ã½ Annual Meeting

Host vs. pathogen and the molecular arms race

March 28, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.