Using bacteria to clean the environment
In recent years, concerns have heightened about increasing amounts of , particularly in . While the impact of this environmental pollution is not well understood, some evidence indicates that these drugs may be entering the food chain. Researchers believe that first accumulate at wastewater treatment facilities. Therefore, there is a need to eliminate the drugs at these facilities.
Ashley Robinson, a senior biochemistry major at Hamline University who plans to start graduate school in the fall, started doing research in her sophomore year. She is presenting a poster at the 2021 91ÑÇÉ«´«Ã½ Annual Meeting on this topic, the third research project she has worked on with .

The researchers’ goal was to find bacteria that break down metformin, a drug commonly used to treat diabetes in the U.S. and around the world. Little research has been done on the impact of pollution with metformin and its byproduct, guanylurea, which are not fully metabolized by humans and thus are excreted into wastewater systems. “We consider them to be emerging pollutants,” Robinson said.

Studies have demonstrated the potential for metformin to disrupt some hormones, she explained. The drug is considered an endocrine disruption agent in some small fishes, and guanylurea has been shown to interfere with the nitrogen cycle in soil. Little is known about its bioaccumulation potential.
“Can these molecules pass up the food chain?” Robinson said. “That is one concern that we have.”
The research team collected samples at a local wastewater treatment facility from several stages of the treatment process. The bacteria in the samples were then grown in the lab under limiting conditions, meaning the bacteria were not given all the nutrients they needed. In this case, their only source of nitrogen was metformin, so most of the bacteria that survived were species that could use metformin as a nitrogen source. The team then used metagenomics to identify the enzymes involved in the breakdown of guanylurea and its transformation product guanidine. They identified three enzymes: guanylurea hydrolase, carboxyguanidine deiminase and allophanate hydrolase.
Robinson and her colleagues are now working to identify the enzyme that breaks down metformin in the initial step that forms guanylurea. They hope the enzymes they find could be used to break down metformin and guanylurea at wastewater treatment facilities, keeping these pollutants out of freshwater systems.
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Meet Robert Helsley
The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
Meet Julia Zeitlinger and David Arnosti — two co-chairs of the 91ÑÇÉ«´«Ã½â€™s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.

New mass spectrometry assay speeds up UTI diagnosis
Scientists in Quebec use liquid chromatography–mass spectrometry to reduce the time needed to test for bacteria in urine from days to minutes — and with smaller samples.

From the journals: MCP
Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.