91ÑÇÉ«´«Ã½

News

Astrocyte cells in the fruit fly brain are an on-off switch

Sarah DeGenova Ackerman
By Sarah DeGenova Ackerman
May 9, 2021

Neuroplasticity — the ability of neurons to — can be turned off and on by the cells that surround neurons in the brain, on fruit flies that I co-authored.

Astrocyte-cells-445x219.jpg
Sarah DeGenova Ackerman,
The colors in this microscope photo of a fruit fly brain show different types of neurons
and the cells that surround them in the brain.

As fruit fly larvae age, their neurons shift from a highly adaptable state to a stable state and lose their ability to change. During this process, support cells in the brain – called astrocytes — that send and receive electrical information. When my team removed the astrocytes, the neurons in the fruit fly larvae remained plastic longer, hinting that somehow astrocytes suppress a neuron's ability to change. We then discovered two specific proteins that regulate neuroplasticity.

Why it matters

The human brain is made up of billions of neurons that form complex connections with one another. Flexibility at these connections is a , but things can go wrong if it isn't tightly regulated. For example, in people, too much plasticity at the wrong time is linked to brain disorders such as and . Additionally, reduced levels of the two neuroplasticity-controlling proteins we identified are linked to increased susceptibility to and .

Similarly, in our fruit flies, removing the cellular brakes on plasticity permanently impaired their crawling behavior. While fruit flies are of course different from humans, their brains work in very similar ways to the human brain and can offer valuable insight.

Fruit-flies-754x488.jpg
Sarah DeGenova Ackerman,
As fruit flies develop, special cells surround their neurons and seem to halt neuroplasticity.

One obvious benefit of discovering the effect of these proteins is the potential to treat some neurological diseases. But since a neuron's flexibility is closely tied to learning and memory, in theory, researchers might be able to in a controlled way to . This could, for example, allow people to more easily learn a new language or musical instrument.

How we did the work

focused our experiments on a specific type of neurons called motor neurons. These control movements like and in fruit flies. To figure out how astrocytes controlled neuroplasticity, we used genetic tools to turn off specific proteins in the astrocytes one by one and then measured the effect on motor neuron structure. We found that astrocytes and motor neurons communicate with one another using a specific pair of proteins called neuroligins and neurexins. These proteins essentially function as an off button for .

What still isn't known

My team discovered that two proteins can control neuroplasticity, but we don't know how these cues from astrocytes cause neurons to lose their ability to change.

Additionally, researchers still know very little about why neuroplasticity is so strong in younger animals and . In our study, we showed that prolonging plasticity beyond development can sometimes be , but we don't yet know why that is, either.

Fruit-flies-brain-445x254.jpg
Sarah DeGenova Ackerman
This is a caption.In this image showing a developing fruit fly brain on the right
and the attached nerve cord on the left, the astrocytes are labeled in different
colors showing their wide distribution among neurons.

What's next

I want to explore why longer periods of neuroplasticity can be harmful. Fruit flies are great study organisms for this research because it is very easy to . In my team's next project, we hope to determine how changes in neuroplasticity during development can lead to long–term changes in behavior.

There is so much more work to be done, but our research is a first step toward treatments that use astrocytes to influence how neurons change in the mature brain. If researchers can understand the basic mechanisms that control neuroplasticity, they will be one step closer to developing therapies to treat a variety of neurological disorders.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Sarah DeGenova Ackerman
Sarah DeGenova Ackerman

Sarah DeGenova Ackerman is a postdoctoral fellow at the University of Oregon Institute of Neuroscience and Howard Hughes Medical Institute.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Unraveling oncogenesis: What makes cancer tick?
91ÑÇÉ«´«Ã½ Annual Meeting

Unraveling oncogenesis: What makes cancer tick?

April 7, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
91ÑÇÉ«´«Ã½ Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

 A new kind of stem cell is revolutionizing regenerative medicine
Feature

A new kind of stem cell is revolutionizing regenerative medicine

April 1, 2025

Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
91ÑÇÉ«´«Ã½ Annual Meeting

Engineering the future with synthetic biology

March 31, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Webinar

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance

March 28, 2025

Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.