How chronic pain shows up in urine
Chronic pain diseases are underresearched — particularly for women, particularly with pelvic pain. . For people with urinary chronic pelvic pain syndrome, or UCPPS, the need to urinate is particularly frequent or urgent, or pelvic pain is prominent, or both. It’s often simply a diagnosis of exclusion, and there is a lack of effective treatments.

Using , researchers have been able to distinguish UCPPS from other chronic pain diseases, including myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS, as well as fibromyalgia and irritable bowel syndrome.
According to in the journal Molecular & Cellular Proteomics, lurking in urine all along were pronounced differences in the proteins related to chronic pain for different sexes — and leads for diagnosis and treatment.
We often think of pain in terms of blunt force, but the workings of chronic pain are more like pulling thousands of tiny strings in the theater of a cell. To develop new treatments and diagnostics, we need to know which proteins are pulling strings or playing other parts.
Finding those proteins is the most powerful aspect of this study, according to first author John Froehlich, professor of surgery at Harvard Medical School. He said his team is “measuring the real things that carry out functions,” along with the upstream bosses of those things.
Why not a blood test? Urine is close to the pelvis and can be more sensitive than blood (or not as good at homeostasis). Also, patients are happy: one less jab for a blood draw.
In a , the scientists received 244 urine samples from the masses, (that is, for the technique called mass spectrometry), blasted them to smithereens — smithereens ordered by mass and charge, for identification — and loaded the data onto the Proteome Discoverer version 2.2.
What did they find?
The levels of .
There were parts of the scaffolds in between cells, and proteins involved in inflammation. The researchers found proteins known for increasing bleeding (previously implicated in UCPPS), for reducing the migration of immune cells, and for the development of epithelial tissue — the lining around blood vessels and organs or their cavities. They also found proteins that work in the postal service of cells, the Golgi.
But what if these protein patterns were due to chronic pain generally, not uniquely UCPPS?
The scientists ran comparisons with people with other chronic pain diseases, and uniquely in UCPPS. Next, the team wants to conduct a larger study to see if these unconventional fingerprints correlate with disease or duration.
Froehlich said he would be “tickled” if other researchers mined the to help people with chronic pain diseases. The growing global burden of ME/CFS includes an .
Froehlich calls corresponding author a “powerhouse” behind this research.
He also credits his mother. After completing a Ph.D. on (“My mom was a midwife”), Froehlich pivoted to a fluid with its own sort of richness. He simply changed streams.
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

A new kind of stem cell is revolutionizing regenerative medicine
Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.