91ÑÇÉ«´«Ã½

Journal News

JBC: A causal gene for X-linked intellectual disability

Dawn Hayward
June 1, 2017

Intellectual disability affects between 1 percent and 3 percent of the world’s population. People with X-linked intellectual disability, a heritable condition, present with IQs below 70 and can be mildly or severely handicapped, requiring lifelong care.

The Human Genome Project greatly has facilitated the diagnosis of XLID, and more than 120 genes on the X chromosome have been established as causal for the disease, which primarily affects males.

A in the reports a new causal gene for XLID. The study was conducted by a team of scientists led by at the Greenwood Genetic Center in South Carolina and at the University of Georgia.

The family

JBC-A-causal-gene-x-linked-Thumb480x270.png Greenwood Genetic Center

The serves patients with birth defects, intellectual disability and autism. There, the Schwartz laboratory works with families with histories of XLID and analyzes genetic defects associated with the disease. For the study published in JBC, individuals from the genetics center traveled to Utah to obtain blood samples from a family with members with XLID in order to isolate DNA and generate cell lines.

DNA sequencing of affected family members uncovered many genes with single-nucleotide changes residing on the X chromosome. After looking for variants that resided in the coding region and that resulted in corresponding amino-acid changes, the Schwartz group came across a mutation in an enzyme called O-GlcNAc transferase, or OGT.

The OGT gene variant found in the Utah family had the three characteristics necessary for continued study: It segregated with the disease, contained a single amino-acid change in the protein and was expressed in the brain. That’s when the collaboration with glycobiologist Wells became critical.

The enzymes

OGT is an enzyme that adds a sugar molecule — GlcNAc — to nuclear and cytosolic proteins. Wells’ group studies this glycosylation modification. The enzyme that removes GlcNAc is called O-GlcNAcase, or OGA. Together, OGT and OGA influence the activity of many cytoplasmic and nuclear proteins in the cell.

The Utah family’s variant contained a leucine-to-phenylalanine substitution, which can be difficult for a protein to accommodate given that phenylalanaine is larger than leucine. The substitution resides in a region of OGT responsible for protein-protein interactions.

Biochemical experiments spearheaded by first author Krithika Vaidyanathan in the Wells laboratory revealed the Utah family’s mutant to be unstable. However, its enzymatic activity was normal, and O-GlcNAc levels, surprisingly, remained constant in patient cell lines derived from blood samples. These findings prompted studies of OGA, the enzyme responsible for removing the modification.

The researchers found that the OGT variant in affected males, along with other co-repressor proteins, occupy the promoter region of the OGA gene and reduce its transcription. This compensates for the OGT variant’s instability and maintains the O-GlcNAc glycosylation modification level.

The Wells laboratory then wondered if the OGT variant occupied other promoter regions too. So the group sequenced RNA of affected males to see which genes’ expression differed from controls’. The researchers found significant changes in several genes, and they’re currently investigating them.

The takeaways

Schwartz notes that the Utah family’s OGT gene variant was challenging to narrow down in the beginning of the work and emphasizes that the collaboration with Wells was critical to establishing OGT’s importance.

Wells points out that the RNA-sequencing experiment involved related patients, which raised the possibility of the results segregating by generation instead of disease. Fortunately, this was not the case.

The researchers say their future studies will investigate additional OGT gene mutations, recently identified by Schwartz and other clinical geneticists, that segregate with the disease. Both the Wells and Schwartz labs are looking at their effects on OGT function. The researchers also are studying stem-cell-derived neuronal cells that are affected by OGT gene mutations.

In the end, the JBC study represents the first instance of an OGT gene mutation being responsible for XLID and broadens the pathways involved in brain development and cognitive function.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Dawn Hayward

Dawn Hayward earned a Ph.D. in biochemistry from the Johns Hopkins University School of Medicine

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

New discovery enables gene therapy for muscular dystrophies, other disorders
News

New discovery enables gene therapy for muscular dystrophies, other disorders

Dec. 28, 2024

At the University of Rochester, researchers find that RNA-based technology facilitates effective use for difficult-to-treat, large-gene diseases.

From the journals: JBC
Journal News

From the journals: JBC

Dec. 27, 2024

Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.