Seeing dead fruit flies is bad for the health of fruit flies
. People have long sought ways to slow, halt or reverse this process, which is commonly associated with declining mental and physical health. One area researchers are probing is the role that sensory perception – such as sight, smell, sound, taste and touch – plays on health and life span.
While you may typically think of your senses as what you use to gather information about your surroundings, recent work has demonstrated that environmental cues themselves can . Your body regulates itself to match the conditions it finds itself in. The in mediating the effects of sensory perception. It stores and integrates incoming information from the environment and interprets and disseminates information across different tissues.
I have used fruit flies, specifically Drosophila melanogaster, for more than 15 years to better understand how . Recently my work has focused on the role the brain plays in aging, looking at how death perception, or when fruit flies perceive other dead fruit flies, affects their life span. My colleagues and I have shown that when fruit flies see, and to a lesser extent smell, an excess of dead flies in their environment, they , including rapid decreases in stored fat, decreased resistence to starvation and shortened life span. While it is currently unknown whether these changes are evolutionarily advantageous, we speculate that it could be, because of the stressful environment that the living flies find themselves in.
In our newly published research, my colleagues and I identified the behind the physiological effects, including rapid aging, that occur when Drosophila encounter their dead. Because other animals also experience physiological effects in the presence of their dead, identifying how this process works in fruit flies could shed light on how it operates in other species, including in people.
Neuroscience of death perception
Using genetic tools that detect which neurons are likely activated when live flies are exposed to dead flies, we identified a handful of neurons in the Drosophila brain called R2/R4 neurons that . These neurons are the center of sensory information processing and motor coordination in fruit fly brains. Inhibiting or activating them changed the aging rate of the flies, suggesting that these neurons alter fly life span in response to perceiving dead flies.
Next, we wanted to identify which molecules produced by R2/R4 neurons were responsible for spurring aging after flies witnessed other dead flies. Since components of a signaling pathway involved in glucose regulation have , we focused on a protein called Foxo that is associated with the pathway.
We discovered that flies without Foxo had similar life spans whether or not there were dead flies present. We saw the same result when we decreased the amount of Foxo in R2/R4 neurons. These findings suggest that plays a key role in changing the life span of living flies.
We also discovered that other components of the signaling pathway involved in glucose regulation, called , mediate the effect of death perception on life span. Because these molecules appeared after changes in R2/R4 neuron activity, this suggests that they do not directly affect Foxo in these neurons. They likely work on other tissues.
Evolution of sensory perception effects on aging
There are many examples of how sensory perception affects aging in animals, suggesting that it is a phenomenon that occurs across species.
For example, manipulating specific subsets of sensory neurons in the worm can either shorten or extend its life span. Genetically manipulating fruit flies to makes them live longer. Furthermore, environmental cues that indicate the presence of , , and all significantly influence physiology and longevity.
Manipulating the sensory system can affect aging even in mammals. For example, can significantly extend the life span of mice.
The effects of seeing dead fruit flies on the physiology of fruit flies resemble changes seen in other species. For instance, like ants and honeybees carry their dead away from the colony in a behavior called necrophoresis. also experience increased glucocorticoid levels when a relative dies. This suggests that the processes that mediate these changes have similarities across species. My research team has previously shown that the effects of death perception in Drosophila involved chemical compounds and neural signaling that have been .
The specific cues that lead to changes in the life spans of worms, flies and mice are likely species-specific. But the fact that they are all affected by changes in sensory input suggests that the molecular mechanisms driving age-related changes may be shared by all, including people.
Altogether, our work provides insight into the neural underpinnings of how the senses affect aging. While translating these findings to humans is clearly speculative, we hope that more research can eventually help researchers better understand the physiological and psychological effects of people who routinely witness death, such as soldiers and first responders.
This article is republished from under a Creative Commons license. Read the .
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

A new kind of stem cell is revolutionizing regenerative medicine
Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.