91ÑÇÉ«´«Ã½

Journal News

Proteomics reveals hallmarks of aging in brain stem cells

Laurel Oldach
July 9, 2020

Myelin, a fatty substance akin to wire insulation, allows fast neuronal signaling both within the brain and to the rest of the body. When myelin in the brain or spinal cord is damaged, adult stem cells called oligodendrocyte progenitor cells, or OPCs, respond by developing into new, fully fledged oligodendrocytes that wrap new myelin around neurons, protecting them and restoring their ability to carry fast electrical messages.

OPCs-445x445.jpg
Alerie Guzman de la Fuente
A cell culture mixture grown in the lab includes oligodendrocyte progenitor cells (green dots) and differentiated oligodendrocytes (white and red, with branches). Guzman de la Fuente conducted the cell culture and microscopy.

The human body’s ability to regenerate lost myelin declines with age. Patients with multiple sclerosis are intimately familiar with this shift. The disease, usually diagnosed in a patient’s twenties, arises when a person develops an immune response to myelin proteins. It starts out as a series of flare-ups of symptoms such as muscle weakness and numbness, followed by months or even years in remission as new oligodendrocytes provide fresh myelin. The disease shifts to a progressively worsening disability in middle age.

Neuroscientist is interested in developing a better understanding of oligodendrocyte progenitor cells to determine why remyelination falters with age. The answer could inform scientists who hope someday to treat MS with pro-remyelinating therapies.

“Most labs studying oligodendrocyte progenitor biology use neonatal OPCs to test drugs,” Guzman de la Fuente said. “These cells are incredibly powerful at forming myelin.” That makes them an imperfect system for studying how myelin formation goes awry with age, she said. “We think that studying adult OPCs … is more relevant to what will happen in the progressive phases of MS, in patients over 50.”

Inr in the journal Molecular & Cellular Proteomics, Guzman de la Fuente and her colleagues in at the University of Cambridge reported a comparison of the proteomes of OPCs from neonatal, young adult and mature mice. Franklin’s lab and others previously have studied the transcriptome of these cells. However, Guzman de la Fuente emphasized, RNA and protein levels are not always perfectly correlated.

Some protein features were quite stable through a mouse’s lifetime. Others changed dramatically. The team focused on the proteins that changed most between young and mature adulthood, and they identified a few patterns.

As with many aging cells, the stem cells from older mice showed some gene-expression drift, acting as if they had begun to differentiate but without gaining the ability to make myelin. The team noticed that as animals aged, their stem cells were more likely to have difficulty metabolizing cholesterol, an important component of myelin; older OPCs were more apt to express proteins involved in other neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, although what these changes mean remains to be elucidated . Finally, as with many aging cells, the OPCs from older mice also showed changes in protein homeostasis.

It will take time and further experiments to determine which of these changes cause the remyelination decline that appears with age. But, Guzman de la Fuente said, having a clearer picture of how the brain changes with aging can only help future efforts to treat multiple sclerosis.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the 91ÑÇÉ«´«Ã½.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.

Of yeasts and men: One-hour proteomes, 10 years apart
Journal News

Of yeasts and men: One-hour proteomes, 10 years apart

Dec. 17, 2024

To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.