91ÑÇÉ«´«Ã½

Journal News

From the journals: JBC

Ken Farabaugh
Aug. 4, 2023

New stroke drug doesn’t impair memory. DNA damage and repair in the 3D genome. A new platform for detecting microRNAs. Read about papers on these topics recently published in the Journal of Biological Chemistry.

 

New stroke drug doesn’t impair memory

Learning and memory require synaptic plasticity; neural connections must be able to form and re-form to establish patterns of signal transduction. Scientists have long known that the Ca2+/calmodulin-dependent protein kinase II, or CaMKII, plays an important role in forming memories. The neuroprotective peptide drug tatCN19o, an inhibitor of CaMKII, is a promising treatment for cerebral ischemia, or stroke. Studies have shown that sustained genetic inhibition of CaMKII can impair memory; however, researchers were not yet sure whether short-term CaMKII inhibition with tatCN19o could also have this negative effect.

Nicole Rumian, Nicole Brown and colleagues at the University of Colorado Anschutz Medical Campus have in the Journal of Biological Chemistry their findings that acute CaMKII inhibition using the neuroprotective peptide tatCN19o did not affect pre-formed memories and only mildly and transiently interfered with learning. The authors used a concentration of tatCN19o 500 times that required for neuroprotection and found that mice injected with the drug displayed no impairment in fear-conditioning memory tests. Furthermore, they showed that in rat cortical cell cultures and live pigs this drug retained its neuroprotective functions at very low doses, even when administered 30 to 60 minutes after ischemia.

These findings support tatCN19o as a promising candidate to treat stroke and show that two of the biggest fears of its short-term use, that it could induce retrograde amnesia or have a long-term impact on learning, were not detected and thus do not pose a counter-indication.

 

DNA damage and repair in the 3D genome

Ultraviolet ray–induced DNA damage is a significant risk factor for skin cancer and other diseases. Studies have previously shown that DNA mutations caused by UV damage are repaired more efficiently in an open chromatin state, where repair enzymes can more easily access the DNA strands. However, researchers do not yet know whether UV-induced DNA damage or subsequent repair is affected by the 3D organization of the genome itself within the nucleus.

In their published in the Journal of Biological Chemistry, Ümit Akköse and Ogün Adebali at Sabanci University in Turkey describe how they investigated the synergistic effects of UV damage and 3D genome organization. They integrated chromosome conformation capture sequencing, excision repair sequencing, Damage-seq and in silico simulations, and confirmed that the peripheral genomic elements shield the central genomic DNA from UV-induced damage, particularly the formation of pyrimidine-pyrimidone [6-4] photoproducts. Furthermore, they found no difference in repair efficiency between DNA at the core and the periphery of the nucleus after 12 minutes of irradiation compared with two hours of irradiation, suggesting that the 3D organization of the genome is altered by UV exposure in this window.

This study provides insights into the complex interplay between 3D genome organization and environmental sources of DNA damage such as UV rays. Further research in this area could lead to the development of new strategies for preventing DNA damage and subsequent genomic instability.

 

A new platform for detecting microRNAs

The small noncoding RNAs known as microRNAs, or miRNAs, can regulate gene expression or, in the case of numerous diseases such as cancers, dysregulate it. Traditional methods of detecting miRNAs include Northern blotting, DNA microarrays and real-time polymerase chain reaction, or RT-PCR, which can be slow and difficult to validate and require a large amount of starting material. More recent isothermal amplification techniques such as rolling circle, strand displacement and loop-mediated isothermal amplification have other issues such as limited sensitivity, complicated design and numerous false positives.

In a in the Journal of Biological Chemistry, Xiuen Cao and colleagues at Central South University in Hunan, China, describe how they developed a new application to detect miRNAs using a platform that combines nonlinear branched hybridization chain reaction, or bHCR, which uses single-stranded DNA as an initiator to trigger assembly of a network of branched DNA hairpin structures, and DNAzymes, which are synthetic DNA sequences with catalytic function, to detect miRNAs. This method used DNAzymes that cleave the bow structures in bHCR to generate new branch-generating trigger sequences, thus exponentially speeding up amplification. The researchers showed that they were able to detect miR-21, a miRNA commonly expressed in cancer, in human liver samples in an assay that was simple, efficient, low cost and, importantly, protein enzyme-free. 

This novel method for detecting miR-21 could be adapted to detect other miRNAs with the same accuracy as RT-PCR but with greater reproducibility. With further validation and testing, the bHCR-DNAzyme detection method could have potential for cancer diagnosis in the clinic.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Ken Farabaugh

Ken Farabaugh is a former 91ÑÇÉ«´«Ã½ science editor.

Related articles

From the journals: JBC
Emily Ulrich
From the Journals: JBC
Ankita Arora
From the Journals: JBC
Ken Farabaugh
From the journals: JBC
Ken Farabaugh
From the journals: JBC
Ken Farabaugh
From the journals: JBC
Ken Farabaugh

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.

Of yeasts and men: One-hour proteomes, 10 years apart
Journal News

Of yeasts and men: One-hour proteomes, 10 years apart

Dec. 17, 2024

To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.