91亚色传媒

News

When it comes to DNA replication, humans and baker鈥檚 yeast are more alike than different

Van Andel Institute
By Van Andel Institute
Aug. 17, 2024

Humans and baker’s yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies published in the journals and .

Huilin Li
Huilin Li

The findings visualize for the first time a molecular complex — called CTF18-RFC in humans and Ctf18-RFC in yeast — that loads a “clamp” onto DNA to keep parts of the replication machinery from falling off the DNA strand.

It is the latest discovery from longtime collaborators  of  and  of t to shed light on the intricate mechanisms that enable the faithful passage of genetic information from generation to generation of cells.

“The accurate copying of DNA is fundamental to the propagation of life,” Li said. “Our findings add key pieces to the puzzle of DNA replication and could improve understanding of DNA replication-related health conditions.”  

DNA replication is a tightly controlled process that copies the genetic code, allowing its instructions to be conveyed from one generation of cells to the next. In diseases like cancer, these mechanisms can fail, leading to uncontrolled or faulty replication with devastating consequences.

To date, at least 40 diseases, including many cancers and rare disorders, have been linked to problems with DNA replication.

DNA replication is a complex process with many moving parts. In humans, the molecular complex CTF18-RFC, pictured above, keeps parts of the replication machinery from falling off the DNA strand. Baker’s yeast use a similar mechanism.

The process begins by unzipping DNA’s ladder-like structure, resulting in two strands called the leading and lagging strands. A molecular construction crew then assembles the missing halves of the strands, turning a single DNA helix into two. Much of this work falls to enzymes called polymerases, which assemble the building blocks of DNA.

On their own, however, polymerases aren’t good at staying on the DNA strand. They require CTF18-RFC in humans and Ctf18-RFC in yeast to thread a ring-shaped clamp onto the DNA leading strand, and another clamp loader called RFC in both human and yeast to thread the clamp onto the lagging strand. The clamp then closes and signals to the polymerases that they can begin replicating DNA.

Using high-powered cryo-electron microscopes, Li, O’Donnell and their teams revealed previously unknown facets of the leading strand clamp loaders’ structures, including a “hook” that forces the leading strand polymerase to let go of the new DNA strand so it can be recognized by the clamp loader. This distinction represents a key difference between the functions of the leading strand clamp loader (CTF18-RFC) and the lagging strand clamp loader (RFC) and illuminates an important aspect of varying DNA duplication mechanisms on the leading and lagging strands.

Lastly, the study identified shared features between the yeast and human leading strand clamp loaders, which demonstrate an evolutionary link between the two. This finding underscores the value of yeast as powerful yet simple models for studying genetics.

This article is republished from the . Read the original

Enjoy reading 91亚色传媒 Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Van Andel Institute
Van Andel Institute

Van Andel Institute is an independent nonprofit organization that conducts biomedical research and offers science education programs.

Get the latest from 91亚色传媒 Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.