91ÑÇÉ«´«Ã½

Journal News

Re-creating coagulation in a lab

A positive step for the horseshoe crab
Kian Kamgar-Parsi
Sept. 15, 2020

When considering modern medicine’s fight against infections, a horseshoe crab is likely not the first thing that comes to mind. However, the of these ancient arthropods is cause for concern in the biomedical industry.

Kaldari/Wikimedia Commons
The horseshoe crab has been around for 450 million years and is more closely related to spiders than other crabs. Use of horseshoe crabs’ blue blood (called hemolymph) for medical tests threatens a species already pressured by environmental change and human development.

Bacterial lipopolysaccharide, or LPS, is a toxic molecule that can cause life-threatening infectious reactions in humans. Horseshoe crab hemolymph (a blood equivalent) is extremely sensitive to LPS, coagulating in response to even trace amounts. Due to this property, hemolymph is used in the Limulus test, a critical tool to ensure medical devices and drugs are free of LPS contamination. Unfortunately, the harvesting of hemolymph pits medical and conservation interests against each other.

, a researcher at Kyushu University in Japan, seeks a solution to this conflict. “(The) raw materials of Limulus test are totally dependent on the limited natural resource,” he said. “As an alternative approach, we have been doing studies to develop a next-generation Limulus test using recombinant (engineered) proteins.”

 Kawabata and his colleagues published in the Journal of Biological Chemistry represents an important step toward a hemolymph-free Limulus test.

In their study, Kawabata’s team focused on the main catalytic pathway of hemolymph coagulation: three zymogens (inactive enzyme precursors) called proC, proB and proCE. In the presence of LPS, proC is activated into an enzyme called alpha-chelicerase C that converts proB into chelicerase B; chelicerase B in turn activates proCE into the clotting enzyme that coagulates the hemolymph. Kawabata functional proC and proB; in this new research, his lab also made a functional proCE without the use of hemolymph for the first time.

“We have overcome several difficulties in preparing these recombinant proteins, and now we have (all) three recombinants: proC, proB, and proCE,” Kawabata said. Using these three proteins to reconstitute the coagulation cascade, the team discovered that specific regions and amino acids in proB and proCE are key for activation. Now they are using their set of recombinant zymogens and these recent data to improve on nature’s designs.

“We are pushing this work forward to prepare more effective and stable recombinants of the protease zymogens applicable for the detection of LPS,” Kawabata said.

Challenges remain before a fully synthetic hemolymph substitute can be used for the Limulus test. While the proteins developed by the team represent the core components, three proteins alone cannot mimic hemolymph perfectly. “Some cofactors, environmental proteins or some preservatives must be indispensable,” Kawabata said.

It is also important to ensure that the cascade cannot be triggered by other environmental substances, something that will require further testing and optimization.

Although questions remain, Kawabata and his team already are working with companies in Japan “to make a more sensitive and convenient test … and ensure a continuous supply of the best materials,” he said.

In time, the proteins developed in the Kawabata lab could bring medical and conservation concerns into harmony, protecting the horseshoe crab population while providing a powerful tool to prevent infections.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Kian Kamgar-Parsi

Kian Kamgar-Parsi received a Ph.D. in biophysics from the University of Michigan and works as a consultant for the pharmaceutical industry.
 

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the 91ÑÇÉ«´«Ã½â€™s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 27, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.

New mass spectrometry assay speeds up UTI diagnosis
Journal News

New mass spectrometry assay speeds up UTI diagnosis

Feb. 25, 2025

Scientists in Quebec use liquid chromatography–mass spectrometry to reduce the time needed to test for bacteria in urine from days to minutes — and with smaller samples.

From the journals: MCP
Journal News

From the journals: MCP

Feb. 21, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.