Processing and translating RNA in health and disease
The field of RNA biology has yielded some of the most widely popularized scientific findings in the last two decades. Not only are many researchers using siRNAs and CRISPR on a daily basis, but we wonder how we ever could have not known about their existence. Yet, these are only the tip of the iceberg of exciting RNA-dependent regulation in biology that will be addressed in depth in this session.
Tracing the life of an RNA, including how it is transcribed, processed and spliced in the nucleus in association with chromatin is one focus. A second topic will be around translation into protein, with a particular focus on the underlying molecular mechanisms, ribosome specialization and gene-specific effects. Finally, several talks will discuss how these RNA regulatory mechanisms are dysregulated in neurodegenerative diseases and cancer.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
These studies, presented by leading experts in RNA biology, will provide not just a global overview of an increasingly important field, with enormous potential for future discoveries, but also explain why RNA is considered one of the most promising drug targets and platforms. If you want to be ready for the next CRISPR, you will attend this session.
Keywords: Ribosomes, translation, RNA processing, RNA and disease, splicing, chromatin, CRISPR and immunity.
Who should attend: Students and postdocs who want to hear about one of the most rapidly expanding fields in biology, educators who want to make sure what they are teaching is current and curious people who want to know what all the hype is about. And, of course, RNA junkies who can’t get enough.
Theme song: from “Aladdin,” because RNA can do it all.
This session is powered by ATP and other ribonucleotides.
RNA biology
RNA biogenesis and processing
Chair: Olga Anczukow
Tracy L. Johnson, University of California, Los Angeles
Hiten D. Madhani, University of California, San Francisco
Jeremy E. Wilusz, Baylor College of Medicine
Joshua T. Mendell, University of Texas Southwestern Medical Center
Ribosomes and translation
Chair: Katrin Karbstein
Shu-ou Shan, California Institute of Technology
Ruben L. Gonzalez, Columbia University
Homa Ghalei, Emory University
Amy S.Y. Lee, Dana–Farber Cancer Institute; Harvard Medical School
RNA and disease
Chair: Jeremy E. Wilusz
Blake Wiedenheft, Montana State University
Shuying Sun, Johns Hopkins University
Olga Anczukow, Jackson Laboratory for Genomic Medicine
Katrin Karbstein, UF Scripps Institute for Biomedical Innovation & Technology
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
When ribosomes go rogue
 Unusual variations in the cellular protein factory can skew development, help cancer spread and more. But ribosome variety may also play biological roles, scientists say.
New discovery enables gene therapy for muscular dystrophies, other disorders
At the University of Rochester, researchers find that RNA-based technology facilitates effective use for difficult-to-treat, large-gene diseases.
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.