Our internal ecology
According to a , if you sample enough humans’ intestines, almost 40,000 types of microbe can be found. Any individual individual micro-organisms in one or two thousand taxonomic groups. How does the microbiome maintain such diversity?
One model to explain the enormous variety borrows from studies of larger ecosystems. A well-known theory in ecology, nonequilibrium coexistence of competitors, suggests that as an environment fluctuates, different species gain an edge over neighbors — but their ascendance rarely lasts long.
Intestinal nutrients fluctuate as the human host eats and excretes, in time with the physiology of sleep–wake cycles, and along the length of the gut. A layer of mucus that protects host cells from commensal microbes introduces new oligosaccharides as a fuel source and also separates microbial communities into mucosal and luminal niches. As conditions change, species in the microbiome shift in abundance and jockey for survival, and the constantly changing competitive edge keeps the ecosystem diverse.
According to University of Ottawa postdoctoral fellow Leyuan Li, the time is ripe for microbiome studies to apply population modeling and systems dynamics from macroecology to this more intimate ecosystem.
“Most of the time we study the gut microbiome as a whole: We sequence one sample as if it were representative of our whole gut,” said Li. “The gut is actually a heterogeneous system … so we need to start thinking about the gut microbiome like a rainforest.”
Li, who conducted her Ph.D. studies building artificial ecosystems, now studies gut microbiome dynamics in health and diseases such as inflammatory bowel disease in the lab of Ottawa professor Daniel Figeys. In a in the journal Molecular & Cellular Proteomics, the pair offer an introduction to microbiome ecology.
The review highlights the potential for metaproteomics, which characterizes the proteins of whole communities of microbes, to describe microbial function. Most microbiome studies use metagenomics, ribosomal RNA sequencing of the mixed population of a microbial community, to identify the bacteria, fungi and archaea that are present. Li thinks metaproteomics also may help researchers road-test increasingly popular ex vivo experimental models of the microbiome to make sure they match up to the real thing.
“Using metagenomics, you know who are there and what they can do,” Li said. “With metaproteomics you know who are there and what they are doing.”
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse 鈥 with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin鈥揗adison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren鈥檚 lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.