91ÑÇÉ«´«Ã½

News

How DNA structure controls CRISPR

Montana State scientists publish research on CRISPR DNA bending
Reagan Cotton
By Reagan Cotton
Oct. 29, 2023

A team of scientists at Montana State University recently published new research that describes how DNA structure controls CRISPR, an immune system that helps bacteria defend themselves against viruses.

Andrew Santiago–Frangos is a postdoctoral researcher in MSU's Department of Microbiology and Cell Biology and is a member of the second cohort for the Maximizing Opportunities for Scientific and Academic Independent Careers, or MOSAIC, program run by the 91ÑÇÉ«´«Ã½.
Andrew Santiago–Frangos is a postdoctoral researcher in MSU's Department of Microbiology and Cell Biology and is a member of the second cohort for the Maximizing Opportunities for Scientific and Academic Independent Careers, or MOSAIC, program run by the 91ÑÇÉ«´«Ã½.

Andrew Santiago-Frangos is a postdoctoral fellow in the lab of professor in MSU’s , which is housed in the . Santiago-Frangos is the lead author on a new paper, which appeared in the journal Nature Structural and Molecular Biology, titled "” that explains how CRISPR systems record exposures to viral infections.

Santiago-Frangos joined the Wiedenheft Lab five years ago, drawn by its well-established program of ongoing CRISPR-related research.

“CRISPR has really blown up as a field since about 2012. I was excited to learn more about it,” he said. “Just like us, bacteria get sick from viral infections, and have evolved immune systems to fight those infections.”

CRISPRs are essential components of an adaptive immune system in bacteria that has recently gained considerable attention for its use in genome engineering. When bacteria are infected by a virus, some use CRISPR-based immune systems to snatch a piece of viral DNA and paste it into the bacteria’s genome.

“You can think of CRISPR as a molecular vaccination system that maintains a molecular record of past infections, and just like our own vaccinations, these systems help bacteria fight off reoccurring viral infections,” said Wiedenheft.

A snapshot of CRISPR enzymes making a DNA-based memory of a viral infection, the first step in a bacterial adaptive immune response. Here, a CRISPR enzyme pastes a fragment of viral DNA (red) into single spot in the bacterial genome called a CRISPR repeat sequence (yellow). CRISPR and additional bacterial proteins recognize extra DNA sequences (light blue) to fold the bacterial genome into a special shape (a U-bend and a loop), that specify this position in the genome.
Andrew Santiago-Frangos
A snapshot of CRISPR enzymes making a DNA-based memory of a viral infection, the first step in a bacterial adaptive immune response. Here, a CRISPR enzyme pastes a fragment of viral DNA (red) into single spot in the bacterial genome called a CRISPR repeat sequence (yellow). CRISPR and additional bacterial proteins recognize extra DNA sequences (light blue) to fold the bacterial genome into a special shape (a U-bend and a loop), that specify this position in the genome.

However, precisely how the bacteria snatch viral DNA and insert this DNA into the molecular vaccination system has remained unclear. To answer that question, the team used a new cyro-electron microscope in MSU’s to take photographs of the molecular machines caught in the act. Co-authors on the paper came from MSU’s Department of Microbiology and Cell Biology, the in MSU’s , the New York Structural Biology Center and the Scripps Research Institute.

By shooting streams of electrons at the samples, Santiago-Frangos was able to determine the three-dimensional structure that explains how the machine bends and inserts DNA into the CRISPR.

“There was extra DNA flanking the CRISPR,” said Santiago-Frangos. “Previously, we hadn’t paid too much attention to that extra DNA, but now we’ve found strongly conserved sequences, which act like instructions for bending the DNA into a special shape. This is what helps the system identify where to insert foreign DNA.”

DNA is generally very rigid and should act like a steel rod at this scale, said Santiago-Frangos, so this degree of bending and folding was surprising.

“It’s important to understand why this happens because it gives us new knowledge of how this immune system works in a bacterial cell,” he said. “Now we’re exploring whether there are changes we can make to this a more efficient process.”

Art imitates science

Andrew Santiago–Frangos was one of the winners of the 91ÑÇÉ«´«Ã½’s inaugural Molecular Motifs bioart competition. His entry illustrated unique DNA bending.  See all the winners, which will be printed in the 91ÑÇÉ«´«Ã½'s calendar for 2024.

An image that Santiago-Frangos created of the unique DNA bending seen in this CRISPR complex (above) was selected by the 91ÑÇÉ«´«Ã½ in the organization’s Molecular Motifs bioart competition. The image will appear in the society's  2024 calendar.

Santiago-Frangos is continuing his research with the support of a . The award is designed to promote diversity in science and support early-career researchers in establishing their own labs. This semester, he will conclude his postdoctoral career at MSU and transition into . He cited MSU’s faculty and administrative support and interdepartmental teamwork for aiding his success. 

“I’m grateful for my time at Montana State University surrounded by mountains and great people,” said Santiago-Frangos. “I’ve learned a lot about grantsmanship and the creative side of science from my mentor, Dr. Wiedenheft. MSU fosters a welcoming and collaborative atmosphere, and I’ve greatly enjoyed working with research groups both in my own department of Microbiology and Cell Biology and in the Department of Chemistry and Biochemistry. I look forward to bringing MSU’s collaborative spirit with me as I transition to the next stage of my career as I open my own lab and join my new colleagues at the University of Pennsylvania.”

This article was first published by Montana State University.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Reagan Cotton
Reagan Cotton

Reagan Cotton is a communications specialist at Montana State University.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.

Of yeasts and men: One-hour proteomes, 10 years apart
Journal News

Of yeasts and men: One-hour proteomes, 10 years apart

Dec. 17, 2024

To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.