91ÑÇÉ«´«Ã½

Lipid News

Targeting cardiolipin modification in a genetic disorder

Arianna F. Anzmann Olivia Sniezek Hilary Vernon
By Arianna F. Anzmann, Olivia Sniezek and Hilary Vernon
Nov. 2, 2021

Barth syndrome, an X-linked disorder that primarily affects males, is characterized by weak skeletal muscles, cardiomyopathy and low neutrophils (the white blood cells that fight bacteria), among other medical concerns. The symptoms can be treated, but no disease-specific therapies have been approved. This rare and serious lipid metabolism disorder is caused by pathogenic variants in the gene TAFAZZIN.

Barth-Syndrome-890x1061.jpg
Arianna Anzmann
Targeting cardiolipin in TAFAZZIN deficiency has shown promise in improving cellular defects in an HEK293 model of TAFAZZIN deficiency and clinical problems seen in Barth syndrome, including cardiac and skeletal muscle dysfunction.

TAFAZZIN encodes for an enzyme involved in the final remodeling step of cardiolipin, a key phospholipid localized to the mitochondrial inner membrane. TAFAZZIN deficiency results in abnormal mitochondrial cardiolipin quantity and composition and subsequent mitochondrial dysfunction. Whereas researchers have known the primary biochemical defect in Barth syndrome for several decades, two important questions have remained unanswered: What molecular pathways are impacted by TAFAZZIN deficiency and contribute to resultant mitochondrial dysfunction? And why does deficiency of an enzyme that affects a molecule present in every cell in the body affect such a specific set of tissues? Answering these questions is key to developing treatments for Barth syndrome.

Combined proteomic, metabolomic and functional studies in a CRISPR-edited TAFAZZIN knockout HEK293 cell model recently have offered insight into these questions. Among the molecular abnormalities that researchers at the Johns Hopkins School of Medicine identified in this cellular model were defects in the expression, assembly and function of complex I of the mitochondrial respiratory chain. The researchers also found increased expression of presenilin-associated rhomboidlike protein, a protease localized to the inner mitochondrial membrane, and abnormal cleavage of its downstream target, phosphoglycerate mutase 5. Thus, TAFAZZIN deficiency affects mitochondrial respiratory chain function and quality control.

The researchers found that both elamipretide, a molecule that binds to cardiolipin, and bromoenol lactone, which inhibits nascent cardiolipin deacylation, partially remediate these mitochondrial defects. Determining if these pathways are differentially impacted in spared versus affected tissues may help researchers understand what causes the pleiotropic effects of TAFAZZIN deficiency and suggest therapeutic approaches.

In addition to demonstrating the effects of cardiolipin targeting in cellular models of TAFAZZIN deficiency in the lab, this approach has shown clinical promise. In a recent study published in the journal Genetics in Medicine, clinical researchers at the Johns Hopkins School of Medicine described results of a placebo-controlled, crossover clinical trial to investigate the role of elamipretide in 12 patients affected by Barth syndrome. The study participants showed improvement in multiple clinical parameters, including muscle strength, exercise tolerance and cardiac stroke volume, after 48 weeks of treatment.

Together, these studies show the translational potential of cellular disease modeling and pathway targeting in lipid metabolism disorders.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Arianna F. Anzmann
Arianna F. Anzmann

Arianna Anzmann is a review analyst at GeneDx and a graduate of the human genetics doctoral program at the John’s Hopkins School of Medicine.

Olivia Sniezek
Olivia Sniezek

Olivia Sniezek is a graduate student in the predoctoral training program in human genetics at the John’s Hopkins School of Medicine.

Hilary Vernon
Hilary Vernon

Hilary Vernon is an associate professor of genetic medicine at Johns Hopkins University.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

When ribosomes go rogue
News

When ribosomes go rogue

Dec. 29, 2024

 Unusual variations in the cellular protein factory can skew development, help cancer spread and more. But ribosome variety may also play biological roles, scientists say.

New discovery enables gene therapy for muscular dystrophies, other disorders
News

New discovery enables gene therapy for muscular dystrophies, other disorders

Dec. 28, 2024

At the University of Rochester, researchers find that RNA-based technology facilitates effective use for difficult-to-treat, large-gene diseases.

From the journals: JBC
Journal News

From the journals: JBC

Dec. 27, 2024

Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.