91ÑÇÉ«´«Ã½

Journal News

Saving the bees with proteomics

Elizabeth Stivison
Nov. 10, 2022

You’ve probably heard about the bees dying. About a third of the world’s food depends on pollinators such as bees, wasps, ants and butterflies — and we are losing them.

A researcher collects naturally mite-resistant bees in the wild to bring back to the University of California, Riverside.
Boris Baer
A researcher collects naturally mite-resistant bees in the wild to bring
back to the University of California, Riverside.

, professor for pollinator health at the at the University of California, Riverside, is an expert on this problem, and in a in the journal Molecular & Cellular Proteomics, he and his team describe how they have used proteomics creatively to help solve the pollinator crisis.

Many factors are hurting pollinators, including climate change, habitat loss and pesticide use. “We are losing all pollinators,” Baer said. “But in the case of the bees, we are aware of it because beekeepers record the losses.”

The U.S. has lost about two-thirds of its bee population since World War II; sometimes we resort to flying bees in from Australia or, as temperatures rise, even putting ice on top of hives so the wax doesn’t melt.

Among the many threats to pollinators is one specific to honeybees: the mite Varroa destructor, which has infested most of the world’s managed bee populations, weakening or killing whole colonies with the disease varroosis. And as if that weren’t bad enough, mites also can act as vectors for other diseases.

In hives at the University of California, Riverside, bee species collected in the wild and bees from managed populations are kept side by side to compare how they respond to stress, including the Varroa destructor mite.
Boris Baer
In hives at the University of California, Riverside, bee species collected in the wild and bees from managed populations are kept side by side to compare how they respond to stress, including the Varroa destructor mite.

“It’s all doom and gloom. Why do we even continue to live on?” Baer said half-jokingly as he described this crisis. But he is, in fact, doing something about it.

In his recent paper, Baer, collaborating with researchers in Ethiopia and China, compared three types of bees: the European honeybee, which is susceptible to the mite and is the honeybee most common in the U.S., and the African and Eastern honeybees (from Ethiopia and China, respectively), which are naturally resistant to the mite.

The researchers used proteomics to study this naturally occurring resistance and to begin identifying what factors may protect bees. They hope that down the line, beekeepers can use this information to breed resistant bees.

This electron microscope image shows a Varroa destructor mite on a honeybee.
USDA/Wikimedia Commons
This electron microscope image shows a Varroa destructor mite on a honeybee.

Baer hypothesized that the immune response of resistant bees might be different from that of susceptible bees. “Bees have immune systems,” he said. “Bees can defend themselves. You just have to have the right bee.”

Using bees of all three types, the lab exposed half of each type to mites and then compared the proteomes in the hemolymph (bee blood), identifying almost 2,000 proteins. As they had hoped, they found variation between those they had exposed to the mites and those they had not. Crucially, they also found variation between the types of bees.

When the researchers sorted through the data, the two resistant bee genotypes showed an enrichment of proteins related to the immune system and detoxification. This supported the team’s hypothesis and could indicate that the resistant bees are mounting a stronger or different immune response to V. destructor, making it harder for the mites to take hold.

Baer’s lab is planning next to figure out what exactly these particular proteins do and possibly set up a breeding program informed by this data. They also hope to study the Africanized bee, a hybrid cross between the susceptible European bee and the protected African bee that also shows resistance.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Elizabeth Stivison

Elizabeth Stivison is a careers columnist for 91ÑÇÉ«´«Ã½ Today and an assistant laboratory professor at Middlebury College.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

An inclusive solar eclipse — with outreach
Essay

An inclusive solar eclipse — with outreach

Dec. 26, 2024

Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.

Of yeasts and men: One-hour proteomes, 10 years apart
Journal News

Of yeasts and men: One-hour proteomes, 10 years apart

Dec. 17, 2024

To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.