91ÑÇÉ«´«Ã½

News

Plants get a GMO glow-up

Genetically modified varieties are coming out of the lab and into homes and gardens
James W. Satterlee
By James W. Satterlee
Nov. 10, 2024

As any avid gardener will tell you, plants with sharp thorns and prickles can leave you looking like you’ve had a run-in with an angry cat. Wouldn’t it be nice to rid plants of their prickles entirely but keep the tasty fruits and beautiful flowers?

Not every rose has its thorn, thanks to gene editing.
James Satterlee, CC BY-SA
Not every rose has its thorn, thanks to gene editing.

who, along with my colleagues, recently across a variety of plants, including roses, eggplants and even some species of grasses. Genetically tailored, smooth-stemmed plants may eventually arrive at a garden center near you.

Acceleration of nature

Plants and other organisms evolve naturally over time. When random changes to their DNA, called mutations, enhance survival, they get passed on to offspring. , plant breeders have taken advantage of these variations to create high-yielding crop varieties.

In 1983, the , or GMOs, appeared in agriculture. , engineered to combat vitamin A deficiency, and are just a couple of examples of how genetic modification has been used to enhance crop plants.

Two recent developments have changed the landscape further. The advent of gene editing using a technique known as has made it possible to modify plant traits more easily and quickly. If the genome of an organism were a book, CRISPR-based gene editing is akin to adding or removing a sentence here or there.

This tool, combined with the increasing ease with which scientists can sequence an organism’s complete collection of DNA – or genome – is rapidly accelerating the ability to predictably engineer an organism’s traits.

By , our team was able to use gene editing to mutate the same gene in other prickly species, yielding smooth, prickle-free plants. In addition to eggplants, we got rid of prickles in a desert-adapted wild plant species with edible raisin-like fruits.

The desert raisin (Solanum cleistogamum) gets a makeover.
Blaine Fitzgerald,
The desert raisin (Solanum cleistogamum) gets a makeover.

We also used a virus to silence the expression of a closely related gene in roses, yielding a rose without thorns.

In natural settings, prickles defend plants against grazing herbivores. But under cultivation, edited plants would be – and after harvest, fruit damage would be reduced. It’s worth noting that prickle-free plants still retain other defenses, such as their that deter insect pests.

From glowing petunias to purple tomatoes

Today, DNA modification technologies are no longer confined to large-scale agribusiness – they are becoming available directly to consumers.

One approach is to mutate certain genes, like we did with our prickle-free plants. For example, scientists have created a by inactivating the genes responsible for bitterness. Silencing the genes that delay flowering in tomatoes has resulted in well suited to urban agriculture.

Another modification approach is to permanently transfer genes from one species to another, using recombinant DNA technology to yield what scientists call a transgenic organism.

The firefly petunia is genetically engineered to glow in the dark.
,
The firefly petunia is genetically engineered to glow in the dark.

At a recent party, I found myself crowded into a darkened bathroom to observe the faint glow of the host’s newly acquired , which contains the genes responsible for the ghost ear mushroom’s bioluminescent glow. Scientists have also modified a pothos houseplant with a gene from rabbits, which allows it to that promote the breakdown of .

Consumers can also grow the purple tomato, genetically engineered to contain pigment-producing genes from the snapdragon plant, resulting in antioxidant-rich tomatoes with a dark purple hue.
Norfolk Healthy Produce,
The Norfolk purple tomato is colorful to the core.

Consumers can also grow the , genetically engineered to contain pigment-producing genes from the snapdragon plant, resulting in antioxidant-rich tomatoes with a dark purple hue.

Risks and rewards

The introduction of genetically modified plants into the consumer market brings with it both exciting opportunities and potential challenges.

With genetically edited plants in the hands of the public, there could be less oversight over what people do with them. For instance, there is a risk of environmental release, which could have . Additionally, as the market for these plants expands, the quality of products may become more variable, necessitating new or more vigilant consumer protection laws. Companies could also apply patent rules limiting seed reuse, echoing some of the .

The future of plant genetic technology is bright – in some cases, quite literally. Bioluminescent golf courses, houseplants that emit tailored fragrances or flowers capable of changing their color in response to spray-based treatments are all theoretical possibilities. But as with any powerful technology, careful regulation and oversight will be crucial to ensuring these innovations benefit consumers while minimizing potential risks.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
James W. Satterlee
James W. Satterlee

James W. Satterlee is a postdoctoral fellow in plant genetics at Cold Spring Harbor Laboratory.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
91ÑÇÉ«´«Ã½ Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

 A new kind of stem cell is revolutionizing regenerative medicine
Feature

A new kind of stem cell is revolutionizing regenerative medicine

April 1, 2025

Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
91ÑÇÉ«´«Ã½ Annual Meeting

Engineering the future with synthetic biology

March 31, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Webinar

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance

March 28, 2025

Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
91ÑÇÉ«´«Ã½ Annual Meeting

Host vs. pathogen and the molecular arms race

March 28, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.