A new way to target mosquito-borne viruses
Dengue and Zika are two mosquito-borne viruses that have evaded effective vaccine development for decades. Affecting approximately 400 million people annually, they are members of the Flaviviridae family, a group of RNA viruses that are closely related in structure.
While a handful of approved vaccines exist for certain flaviviruses in humans, including the dengue vaccine Dengvaxia, there is still significant room to improve the safety and efficacy of these vaccines, most of which show poor efficacy in animal studies and waning immunity in humans. The traditional approach uses a live-attenuated, or weakened, form of the virus that causes a disease to make the corresponding vaccine. Replication production has been a major challenge in vaccine development for flaviviruses, as live-attenuated virus vaccines have difficulty replicating evenly.
Thanh Phan and Matthew Hvasta, Ph.D. students in at the University of North Carolina at Chapel Hill, set out to improve dengue and Zika vaccines. Instead of the traditional live-attenuated virus approach, they used small sections, or subunits, of the virus as a way for the vaccine to recognize and target the virus. In in the Journal of Biological Chemistry, the team writes about the development of this subunit vaccine, which Phan and Hvasta describe as “putting two Tetris pieces together and having them fit as tightly as possible.”
Their research has led the two to use a soluble version of the envelope proteins, or sE, on the surface of the dengue and Zika viruses as candidates for vaccine antigens. For sE proteins to be a viable subunit vaccine, they must be easy to produce and maintain stability in the correct conformation.
Previous work in the Kuhlman lab also took this divergent vaccine approach by identifying specific dengue mutations to stabilize sE proteins for dengue serotype DENV2, which significantly raised expression yields. Phan and Hvasta used this information to test the same mutations of Zika and the remaining dengue serotypes (DENV1, 3 and 4) by searching for and mutating similar residues as those mutated for DENV2. They found increased stability as well as a fourfold to 250-fold increase in production yields.
Creating a stable, high-expression sE protein opens the door for improved dengue and Zika vaccines as well as the potential to target other viruses in the Flaviviridae family, such as yellow fever. The next steps for this project are to perform mouse studies and measure the immune response to these sE proteins.
“Our goal is to develop a safe vaccine for dengue viruses, which will directly affect countries in the (sub)tropical areas of the world where dengue is endemic,” Phan and Hvasta wrote in an email. “A safe dengue vaccine will allow these nations to reallocate funds from what would usually be used to treat dengue to hopefully being able to treat other health care necessities.”
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
When ribosomes go rogue
 Unusual variations in the cellular protein factory can skew development, help cancer spread and more. But ribosome variety may also play biological roles, scientists say.
New discovery enables gene therapy for muscular dystrophies, other disorders
At the University of Rochester, researchers find that RNA-based technology facilitates effective use for difficult-to-treat, large-gene diseases.
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.