Breathe deep — for August, it’s oxygen
We mark the 150th anniversary of Dimitri Mendeleev’s periodic table of chemical elements this year by highlighting elements important for life. So far, we’ve covered hydrogen, iron, sodium, potassium, chlorine, copper, calcium, phosphorus, carbon and nitrogen.
Photosynthetic organisms capture the energy of sunlight and use it to produce organic molecules from the carbon dioxide and water they obtain from the environment. In the process, oxygen is released to the atmosphere.For August, we selected oxygen, a highly reactive nonmetal with chemical symbol O and atomic number 8. Oxygen tends to fill its two unpaired electron shells by accepting electrons from other atoms via covalent bonding. It forms oxide compounds with a variety of elements, and its most common oxidation state is -2, but it also can exist in oxidation states of -1, +1 and +2.
After hydrogen and helium, oxygen is the third most abundant chemical element in the known universe. It is the second most abundant element in the Earth’s geosphere after iron and the most abundant element by mass in the Earth’s crust — at about 47% to 49%. Oxygen makes up about 89% of the world’s oceans, and diatomic oxygen gas constitutes about 20% of the Earth’s atmosphere — second only to nitrogen.
Oxygen is an important contributor to the evolution of all life on Earth. The earliest cells used components of the early Earth’s atmosphere — CO, CO2, N2 and CH4 — to synthesize organic compounds with the help of volcanic heat and lightning. Cells gradually developed pigments that capture visible light from the sun, acquired the ability to use H2O as the electron donor in photosynthetic reactions and started to eliminate O2 as waste. Under these conditions, the earth’s atmosphere grew richer in oxygen.
Aerobic organisms that live in habitats with a plentiful supply of O2 transfer electrons from fuel molecules to oxygen, deriving energy for preservation and growth. Their anaerobic counterparts have evolved in environments devoid of oxygen and transfer their electrons to nitrate, sulfate or carbon dioxide, forming dinitrogen, hydrogen sulfide and methane, respectively.
Aerobe cells obtain molecular oxygen from the surrounding medium by diffusion through their plasma membrane. However, oxygen is poorly soluble in the cytoplasm and extracellular milieu, and it cannot be diffused over long distances. Organisms have evolved water-soluble proteins that use transition metals such as iron and copper to store and transport oxygen in aqueous environments. Proteins such as hemoglobin and myoglobin use iron in the prosthetic group heme to bind oxygen reversibly and move it through tissues.
Cytochromes also use heme to transfer electrons in oxidation-reduction reactions during cellular respiration and photosynthesis. The constant movement of electrons inside the cell generates reactive oxygen species as byproducts, mostly superoxide ions and hydrogen peroxide. The immune cells of some vertebrates and certain plants use these reactive species to destroy invading microorganisms and pathogens.
Oxygen is a major constituent of the biological molecules in living beings. Chemical groups that contain oxygen include the hydroxyls, carbonyls and carboxyls in alcohols plus aldehydes, ketones, carboxylic acids and esters. These organic compounds are the building blocks for proteins, nucleic acids, carbohydrates and fats, the structural components of cells and tissues. Oxygen is also an important constituent of inorganic compounds important for life, such as water and phosphate.
A year of (bio)chemical elements
Read the whole series:
For January, it’s atomic No. 1
For February, it’s iron — atomic No. 26
For March, it’s a renal three-fer: sodium, potassium and chlorine
For April, it’s copper — atomic No. 29
For May, it’s in your bones: calcium and phosphorus
For June and July, it’s atomic Nos. 6 and 7
Breathe deep — for August, it’s oxygen
Manganese seldom travels alone
For October, magnesium helps the leaves stay green
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.