91ÑÇÉ«´«Ã½

Annual Meeting

MCSs stick the landing

Learn about the Discover BMB 2024 symposium on membrane contact sites
Christopher Beh Jen Liou
By Christopher Beh and Jen Liou
Sept. 15, 2023

Membrane contact sites, or MCSs, represent the ultimate intracellular duct tape — binding organelles together within eukaryotic cells to promote growth. Enabled by tethering proteins, MCSs are a coordinating nexus that fosters intermembrane exchange and signaling.

“The cell, too, has a geography, and its reactions occur in colloidal apparatus, of which the form, and the catalytic activity of its manifold surfaces, must efficiently contribute to the due guidance of chemical reactions.”  — Sir Frederick Gowland Hopkins (Nobel Prize in Physiology or Medicine, 1929)

As conduits for lipid and small metabolite transfer between organelle membranes, MCSs are key regulators of metabolism. As structural elements linking intracellular membranes, MCSs control membrane organization and protect against membrane stresses. As platforms for important signaling receptors, MCSs initiate cellular responses to regulatory or environmental cues.

The recognition of MCSs as key regulators of cell growth is underscored by new discoveries of MCS function in cellular disease and infection.

Keywords: Membrane contact sites, membrane stress, mitochondrial regulation, nonvesicular transport, lipid transport, membrane structure, lipid metabolism, lipid regulation.

Who should attend: Molecular cell biologists and membrane biochemists who marvel at how membrane dynamics regulates metabolic function and organelle organization.

Theme song: by Lionel Richie

This session is powered by the unsung heroes of membrane and lipid research.

Submit an abstract

Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.

Membrane contact sites

Regulation of lipid transfer and metabolism at membrane contact sites

 

Hongyuan YangUniversity of Texas Health Science Center at Houston

Jen Liou (chair), University of Texas Southwestern Medical Center

Alexandre ToulmayUniversity of Texas Southwestern Medical Center

Arash BashirullahUniversity of Wisconsin–Madison

Membrane signaling at membrane contact sites

Thomas Simmen (chair), University of Alberta

Jay TanUniversity of Pittsburgh

Alissa WeaverVanderbilt University

Chi-Lun ChangSt. Jude Children's Research Hospital

Specialized membrane contact site functions

Isabelle DerréUniversity of Virginia

Aaron NeimanStony Brook University

Christopher T. Beh (chair), Simon Fraser University

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Christopher Beh
Christopher Beh

Christopher Beh is a professor of molecular genetics and cell biology at Simon Fraser University, Burnaby, Canada.

Jen Liou
Jen Liou

Jen Liou is a scholar in medical research at the University of Texas Southwestern Medical Center, Dallas, Texas.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Exploring lipid metabolism: A journey through time and innovation
91ÑÇÉ«´«Ã½ Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the 91ÑÇÉ«´«Ã½ annual meeting.

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025
91ÑÇÉ«´«Ã½ Annual Meeting

Melissa Moore to speak at 91ÑÇÉ«´«Ã½ 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the 91ÑÇÉ«´«Ã½ annual meeting to be held April 12-15 in Chicago.

 A new kind of stem cell is revolutionizing regenerative medicine
Feature

A new kind of stem cell is revolutionizing regenerative medicine

April 1, 2025

Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
91ÑÇÉ«´«Ã½ Annual Meeting

Engineering the future with synthetic biology

March 31, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Webinar

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance

March 28, 2025

Alejandro Vila, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
91ÑÇÉ«´«Ã½ Annual Meeting

Host vs. pathogen and the molecular arms race

March 28, 2025

Learn about the 91ÑÇÉ«´«Ã½ 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.