MCP: Keeping tabs on protein variants
Perhaps you have seen a time-lapse video of a busy city sidewalk. As people come and go, they blur together into a crowd with no distinguishing features. You could count the number of people pushing strollers in each frame, but it might be hard to tell how long one parent has been circling the same block with a colicky baby.
As proteins are made and destroyed in a cell, they tend to blur together too. Many proteomics studies measure with precision the number of copies of each protein species but not how long each one lasts. In in the journal Molecular & Cellular Proteomics, researchers in lab at the report a new approach to determining the lifespan of a great many proteins, and their alternative isoforms, in large data sets.
“Plenty of research has demonstrated that cancer, neurodegenerative diseases, age-related diseases and even aging per se are associated with altered lifespans of single proteins or a global dysregulation of the cellular recycling machinery,” said lead author . She compares a cell in which proteins are continuously made and destroyed to “a tiny protein production and recycling machinery.” With colleagues, Zecha set out to measure this factory’s output, determining the rates of production and destruction of many different proteins.
The researchers combined two techniques for telling samples apart by their mass: stable isotope labeling by amino acids in cell culture, or SILAC for short, and tandem mass tag labeling, or TMT. The primary SILAC label enabled a pulse-chase experiment, a way of measuring how much of a new amino acid is taken up after it is added to cells. By combining SILAC with TMT, the researchers could achieve high proteome coverage with high reproducibility and accurate counts of each protein. Then they looked for trends over time. For example, a protein’s rate of synthesis can be measured by how much of the new SILAC label appears over time in its spectrum, and degradation is measured by how much the old label disappears.
Other scientists previously had combined the SILAC and TMT methods, but this data set gave an unusually thorough look at protein lifetimes. The researchers found substantial variability among splice variants of proteins, which no one had yet measured in a data set of this size. Because two splice variants from the same gene have many peptides in common, a data set with many measurements at the peptide level was required.
The approach could offer a better way of understanding the basic biology of disease states with altered protein turnover. The researchers also are interested in modifications occurring after translation that may alter turnover rates.
“A proteomewide measurement of turnover rates of modified peptides is the next logical step for us,” Zecha said.
Enjoy reading 91ÑÇÉ«´«Ã½ Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from 91ÑÇÉ«´«Ã½ Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JBC
Huntington protein interactions affect aggregation. Intrinsically disordered protein forms a scaffold. From unknown protein to curbing cancer growth. Read about recent JBC papers on these topics.
An inclusive solar eclipse — with outreach
Traveling more than 150 miles with a group of neurodivergent students to have them witness a rare orbital alignment. and also teach the public about it, requires some strategic planning.
Predicting fatty liver disease from a tiny blood sample
Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.
An ancient animal helps scientists improve modern technology
The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.
New structure gives insight into mRNA export and cancers
Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.
Analyzing triglycerides in Americans of African ancestry
Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.